×

Towards a code for nonstiff differential systems based on general linear methods with inherent Runge-Kutta stability. (English) Zbl 1405.65086

Summary: Various issues are discussed which are relevant to the development of the code for nonstiff differential systems based on a class of general linear methods with inherent Runge-Kutta stability.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
65L50 Mesh generation, refinement, and adaptive methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
65L05 Numerical methods for initial value problems involving ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Butcher, J. C.; Chartier, P.; Jackiewicz, Z., Experiments with a variable-order type 1 DIMSIM code, Numer. Algorithms, 22, 237-261, (1999) · Zbl 0958.65083
[2] Butcher, J. C.; Jackiewicz, Z., A new approach to error estimation for general linear methods, Numer. Math., 95, 487-502, (2003) · Zbl 1032.65088
[3] Butcher, J. C.; Jackiewicz, Z., Construction of general linear methods with Runge-Kutta stability properties, Numer. Algorithms, 36, 53-72, (2004) · Zbl 1055.65083
[4] Butcher, J. C.; Jackiewicz, Z., Unconditionally stable general linear methods for ordinary differential equations, BIT, 44, 557-570, (2004) · Zbl 1066.65078
[5] Butcher, J. C.; Jackiewicz, Z.; Wright, W. M., Error propagation of general linear methods for ordinary differential equations, J. Complex., 23, 560-580, (2007) · Zbl 1131.65068
[6] Butcher, J. C.; Wright, W. M., The construction of practical general linear methods, BIT, 43, 695-721, (2003) · Zbl 1046.65054
[7] Gustafson, K.; Lundh, M.; Söderlind, G., A PI stepsize control for the numerical solution of ordinary differential equations, BIT, 28, 270-287, (1988) · Zbl 0645.65039
[8] Gustafsson, K., Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods, ACM Trans. Math. Softw., 17, 533-554, (1991) · Zbl 0900.65256
[9] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I. Nonstiff Problems, (1993), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0789.65048
[10] Hull, T. E.; Enright, W. H.; Fellen, B. M.; Sedgwick, A. E., Comparing numerical methods for ordinary differential equations, SIAM J. Numer. Anal., 9, 603-637, (1972) · Zbl 0221.65115
[11] Jackiewicz, Z., Implementation of DIMSIMs for stiff differential systems, Appl. Numer. Math., 42, 251-267, (2002) · Zbl 1001.65082
[12] Jackiewicz, Z., General Linear Methods for Ordinary Differential Equations, (2009), John Wiley: John Wiley Hoboken, New Jersey · Zbl 1211.65095
[13] Shampine, L. F.; Gladwell, I.; Thompson, S., Solving ODEs with MATLAB, (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1079.65144
[14] Shampine, L. F.; Reichelt, M. W., The Matlab ODE suite, SIAM J. Sci. Comput., 18, 1-22, (1997) · Zbl 0868.65040
[15] Söderlind, G., The automatic control in numerical integration, CWI Quart., 11, 55-74, (1998) · Zbl 0922.65063
[16] Söderlind, G., Automatic control and adaptive time-stepping, Numer. Algorithms, 31, 281-310, (2002) · Zbl 1012.65080
[17] Wright, W., General Linear Methods with Inherent Runge-Kutta Stability, (2002), The University of Auckland: The University of Auckland New Zealand, Ph.D. thesis · Zbl 1016.65049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.