×

zbMATH — the first resource for mathematics

Non-radial solutions for some semilinear elliptic equations on the disk. (English) Zbl 1404.35198
Summary: Starting with approximate solutions of the equation \(-\varDelta u = w u^3\) on the disk, with zero boundary conditions, we prove that there exist true solutions nearby. One of the challenges here lies in the fact that we need simultaneous and accurate control of both the (inverse) Dirichlet Laplacian and nonlinearities. We achieve this with the aid of a computer, using a Banach algebra of real analytic functions, based on Zernike polynomials. Besides proving existence, and symmetry properties, we also determine the Morse index of the solutions.

MSC:
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
Software:
Ada95; MPFR
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. Arioli, H. Koch, The computer programs and data files are available at https://doi.org/10.1016/j.na.2018.09.001.
[2] Arioli, G.; Koch, H., Non-symmetric low-index solutions for a symmetric boundary value problem, J. Differential Equations, 252, 448-458, (2012) · Zbl 1232.35047
[3] Arioli, G.; Koch, H., Some symmetric boundary value problems and non-symmetric solutions, J. Differential Equations, 259, 796-816, (2015) · Zbl 1319.35056
[4] Arioli, G.; Koch, H., Spectral stability for the wave equation with periodic forcing, J. Differential Equations, 265, 2470-2501, (2018) · Zbl 1402.35039
[5] Badiale, M.; Cappa, G., Non radial solutions for non homogeneous Hénon equation, Nonlinear Anal., 109, 45-55, (2014) · Zbl 1296.35035
[6] I. Balázs, J.B. van den Berg, J. Courtois, J. Dudás, J.-P. Lessard, A. Vörös-Kiss, J.F. Williams, X.Y. Yin, Computer-assisted proofs for radially symmetric solutions of PDEs, preprint, 2017.
[7] Castelli, R.; Lessard, J.-P.; Mireles-James, J. D., Parameterization of invariant manifolds for periodic orbits (II): A posteriori analysis and computer assisted error bounds, J. Dynam. Differential Equations, (2017)
[8] Chen, G.; Ni, W.-M.; Zhou, J., Algorithms and visualization for solutions of nonlinear elliptic equations, Internat. J. Bifur. Chaos, 10, 1565-1612, (2000) · Zbl 1090.65549
[9] Cyranka, J.; Zgliczyński, P., Existence of globally attracting solutions for one-dimensional viscous Burgers equation with nonautonomous forcing - a computer assisted proof, SIAM J. Appl. Dyn. Syst., 14, 787-821, (2015) · Zbl 1312.65170
[10] Figueras, J. L.; Haro, A., Rigorous computer assisted application of KAM theory: a modern approach, A. Found. Comput. Math., 17, 1123-1193, (2017) · Zbl 1383.37047
[11] Figueras, J.-L.; de la Llave, R., Numerical computations and computer assisted proofs of periodic orbits of the Kuramoto-Sivashinsky equation, SIAM J. Appl. Dyn. Syst., 16, 834-852, (2017) · Zbl 1370.65047
[12] Jansen, A. J.E. M., Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials, J. Opt. Soc. Am. A, 31, 1604-1613, (2014)
[13] Johansson, H. T.; Forssén, C., Fast and accurate evaluation of Wigner \(3 j\), \(6 j\), and \(9 j\) symbols using prime factorisation and multi-word integer arithmetic, SIAM J. Sci. Comput., 38, A376-A384, (2016) · Zbl 1333.81011
[14] Kanjin, Y., Banach algebra related to disk polynomials, Tohoku Math. J., 37, 395-404, (1985) · Zbl 0563.42016
[15] Koornwinder, T., Two-variable analogues of the classical orthogonal polynomials, (Askey, R. A., Theory and Application of Special Functions, (1975), Academic Press), 435-495
[16] Pacella, F.; Plum, M.; Ruetters, D., A computer-assisted existence proof for Emden’s equation on an unbounded L-shaped domain, Commun. Contemp. Math., 19, (2017) · Zbl 1367.35080
[17] Pacella, F.; Weth, T., Symmetry of solutions to semilinear elliptic equations via Morse index, Proc. Amer. Math. Soc., 135, 1753-1762, (2007) · Zbl 1190.35096
[18] Plum, M., Computer-assisted proofs for semilinear elliptic boundary value problems, Jpn. J. Ind. Appl. Math., 26, 419-442, (2009) · Zbl 1186.35073
[19] Rasch, J.; Yu, A. C.H., Efficient storage scheme for precalculated Wigner \(3 J\), \(6 J\) and Gaunt coefficients, Siam J. Sci. Comput., 25, 1416-1428, (2003) · Zbl 1101.68542
[20] Regge, T., Symmetry properties of Clebsch-Gordan’s coefficients, Nuovo Cimento, 10, 544-545, (1958) · Zbl 0087.02001
[21] Rotenberg, M.; Bivins, R.; Metropolis, N.; Wooten, J. K., The 3j and 6j Symbols, (1959), MIT Press: MIT Press Cambridge, MA
[22] Smets, D.; Su, J.; Willem, M., Non radial ground states for the Hénon equation, Commun. Contemp. Math., 4, 467-480, (2002) · Zbl 1160.35415
[23] Tango, W. J., The circle polynomials of zernike and their application in optics, Appl. Phys., 13, 327-332, (1977)
[24] Watanabe, Y.; Nakao, M. T., A numerical verification method for nonlinear functional equations based on infinite-dimensional Newton-like iteration, Appl. Math. Comput., 276, 239-251, (2016)
[25] Wünsche, A., Generalized zernike or disc polynomials, J. Comput. Appl. Math., 174, 135-163, (2005) · Zbl 1062.33011
[26] Ada Reference Manual ISO/IEC 8652: 2012(E), available e.g. at http://www.ada-auth.org/arm.html.
[27] For earlier work see references in [].
[28] A free-software compiler for the Ada programming language, which is part of the GNU Compiler Collection; see http://gnu.org/software/gnat/.
[29] The Institute of Electrical and Electronics Engineers, Inc. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-2008.
[30] The MPFR library for multiple-precision floating-point computations with correct rounding; see http://www.mpfr.org/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.