×

zbMATH — the first resource for mathematics

On the global convergence of a projective trust region algorithm for nonlinear equality constrained optimization. (English) Zbl 1414.90329
Summary: A trust-region sequential quadratic programming (SQP) method is developed and analyzed for the solution of smooth equality constrained optimization problems. The trust-region SQP algorithm is based on filter line search technique and a composite-step approach, which decomposes the overall step as sum of a vertical step and a horizontal step. The algorithm includes critical modifications of horizontal step computation. One orthogonal projective matrix of the Jacobian of constraint functions is employed in trust-region subproblems. The orthogonal projection gives the null space of the transposition of the Jacobian of the constraint function. Theoretical analysis shows that the new algorithm retains the global convergence to the first-order critical points under rather general conditions. The preliminary numerical results are reported.
MSC:
90C30 Nonlinear programming
90C55 Methods of successive quadratic programming type
65K05 Numerical mathematical programming methods
Software:
ipfilter; SNOPT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahookhosh, M.; Amini, K.; Peyghami, M. R., A nonmonotone trust-region line search method for largescale unconstrained optimization, Appl. Math. Model., 36, 478-487, (2012) · Zbl 1236.90077
[2] Chen, Y.; Sun, W., A dwindling filter line search method for unconstrained optimization, Math. Comp., 84, 187-208, (2015) · Zbl 1307.65085
[3] Chen, Z.; Qiu, S.; Jiao, Y., A penalty-free method for equality constrained optimization, J. Ind. Manag. Optim., 9, 391-409, (2013) · Zbl 1274.65167
[4] Conn, A. R., Gould, N. I. M., Toint, P. L.: Trust-region methods, MPS-SIAM Series on Optimization 1, SIAM, Philadelphia, 2000 · Zbl 0958.65071
[5] Cui, Z.; Wu, B.; Qu, S., Combining nonmonotone conic trust region and line search techniques for unconstrained optimization, J. Comput. Appl. Math., 235, 2432-2441, (2011) · Zbl 1215.65107
[6] Dolan, E. D.; Moré, J. J., Benchmarking optimization software with performance profiles, Math. Program., 91, 201-213, (2002) · Zbl 1049.90004
[7] Fletcher, R.; Gould, N. I. M.; Leyffer, S.; etal., Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming, SIAM J. Optim., 13, 635-659, (2003) · Zbl 1038.90076
[8] Fletcher, R.; Leyffer, S., Nonlinear programming without a penalty function, Math. Program., 91, 239-269, (2002) · Zbl 1049.90088
[9] Fletcher, R.; Leyffer, S.; Toint, P. L., On the global convergence of a filter-SQP algorithm, SIAM J. Optim., 13, 44-59, (2002) · Zbl 1029.65063
[10] Gill, P. E.; Murray, W.; Saunders, M. A., SNOPT: an SQP algorithm for large-scale constrained optimization, SIAM Rev., 47, 99-131, (2005) · Zbl 1210.90176
[11] Gould, N. I. M.; Toint, P. L., Nonlinear programming without a penalty function or a filter, Math. Program., 122, 155-196, (2010) · Zbl 1216.90069
[12] Gu, C.; Zhu, D., A dwindling filter line search algorithm for nonlinear equality constrained optimization, J. Syst. Sci. Complex., 28, 623-637, (2015) · Zbl 1330.90106
[13] Gu, C.; Zhu, D., A nonmonotone line search filter method with reduced Hessian updating for nonlinear optimization, J. Syst. Sci. Complex., 26, 534-555, (2013) · Zbl 1292.90279
[14] Gu, C.; Zhu, D., A secant algorithm with line search filter method for nonlinear optimization, Appl. Math. Model., 35, 879-894, (2011) · Zbl 1205.90007
[15] Gu, C.; Zhu, D. T., Global and local convergence of a new affine scaling trust region algorithm for linearly constrained optimization, Acta Math. Sin., Engl. Ser., 32, 1203-1213, (2016) · Zbl 1348.90573
[16] Heinkenschloss, M.; Ridzal, D., A matrix-free trust-region SQP method for equality constrained optimization, SIAM J. Optim., 24, 1507-1541, (2014) · Zbl 1316.90064
[17] Hock, W., Schittkowski, K.: Test examples for nonlinear programming codes, volume 187 of Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin-New York, 1981 · Zbl 0452.90038
[18] Lalee, M.; Nocedal, J.; Plantenga, T., On the implementation of an algorithm for large-scale equality constrained optimization, SIAM J. Optim., 8, 682-706, (1998) · Zbl 0913.65055
[19] Liu, X.; Yuan, Y., A sequential quadratic programming method without a penalty function or a filter for nonlinear equality constrained optimization, SIAM J. Optim., 21, 545-571, (2011) · Zbl 1233.90257
[20] Nocedal, J., Wright, S. J.: Numerical Optimization (second edition), Springer, New York, 2006 · Zbl 1104.65059
[21] Nocedal, J.; Yuan, Y. X., Combining trust region and line search techniques, 153-175, (1998), Dordrecht · Zbl 0909.90243
[22] Pei, Y.; Zhu, D., A trust-region algorithm combining line search filter method with Lagrange merit function for nonlinear constrained optimization, Appl. Math. Comput., 247, 281-300, (2014) · Zbl 1338.90461
[23] Pei, Y.; Zhu, D., A trust-region algorithm combining line search filter technique for nonlinear constrained optimization, Int. J. Comput. Math., 91, 1817-1839, (2014) · Zbl 1304.49067
[24] Powell, M. J. D.; Yuan, Y., A trust region algorithm for equality constrained optimization, Math. Programming, 49, 189-211, (1990) · Zbl 0816.90121
[25] Qiu, S.; Chen, Z., Global and local convergence of a class of penalty-free-type methods for nonlinear programming, Appl. Math. Model., 36, 3201-3216, (2012) · Zbl 1252.90078
[26] Qu, S. J.; Zhang, Q. P.; Yang, Y. T., A nonmonotone conic trust region method based on line search for solving unconstrained optimization, J. Comput. Appl. Math., 224, 514-526, (2009) · Zbl 1160.90008
[27] Schittkowski, K.: More test examples for nonlinear programming codes, volume 282 of Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, 1987 · Zbl 0658.90060
[28] Shen, C.; Leyffer, S.; Fletcher, R., A nonmonotone filter method for nonlinear optimization, Comput. Optim. Appl., 52, 583-607, (2012) · Zbl 1259.90140
[29] Su, K.; An, H., Global convergence of a nonmonotone filter method for equality constrained optimization, Appl. Math. Comput., 218, 9396-9404, (2012) · Zbl 1245.90092
[30] Sun, W., Yuan, Y. X.: Optimization Theory and Methods: Nonlinear Programming, Springer, New York, 2006 · Zbl 1129.90002
[31] Ulbrich, M.; Ulbrich, S.; Vicente, L. N., A globally convergent primal-dual interior-point filter method for nonlinear programming, Math. Program., 100, 379-410, (2004) · Zbl 1070.90110
[32] Wächter, A.; Biegler, L. T., Line search filter methods for nonlinear programming: motivation and global convergence, SIAM J. Optim., 16, 1-31, (2005) · Zbl 1114.90128
[33] Wang, H.; Pu, D., A nonmonotone filter trust region method for the system of nonlinear equations, Appl. Math. Model., 37, 498-506, (2013) · Zbl 1349.90843
[34] Yuan, G.; Wei, Z.; Zhang, M., An active-set projected trust region algorithm for box constrained optimization problems, J. Syst. Sci. Complex., 28, 1128-1147, (2015) · Zbl 1329.90145
[35] Zhang, J.; Zhu, D., A trust region typed dogleg method for nonlinear optimization, Optimization, 21, 543-557, (1990) · Zbl 0723.90068
[36] Zhou, Q.; Hang, D., Nonmonotone adaptive trust region method with line search based on new diagonal updating, Appl. Numer. Math., 91, 75-88, (2015) · Zbl 1310.65070
[37] Zhu, D., An affine scaling trust-region algorithm with interior backtracking technique for solving boundconstrained nonlinear systems, J. Comput. Appl. Math., 184, 343-361, (2005) · Zbl 1087.65047
[38] Zhu, D., Superlinearly convergent affine scaling interior trust-region method for linear constrained lc 1 minimization, Acta Math. Sin., Engl. Ser., 24, 2081-2100, (2008) · Zbl 1167.90021
[39] Zhu, X.; Pu, D., A restoration-free filter SQP algorithm for equality constrained optimization, Appl. Math. Comput., 219, 6016-6029, (2013) · Zbl 1273.65076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.