×

On the analysis of the double Hopf bifurcation in machining processes via centre manifold reduction. (English) Zbl 1404.74065

Summary: The single-degree-of-freedom model of orthogonal cutting is investigated to study machine tool vibrations in the vicinity of a double Hopf bifurcation point. Centre manifold reduction and normal form calculations are performed to investigate the long-term dynamics of the cutting process. The normal form of the four-dimensional centre subsystem is derived analytically, and the possible topologies in the infinite-dimensional phase space of the system are revealed. It is shown that bistable parameter regions exist where unstable periodic and, in certain cases, unstable quasi-periodic motions coexist with the equilibrium. Taking into account the non-smoothness caused by loss of contact between the tool and the workpiece, the boundary of the bistable region is also derived analytically. The results are verified by numerical continuation. The possibility of (transient) chaotic motions in the global non-smooth dynamics is shown.

MSC:

74H60 Dynamical bifurcation of solutions to dynamical problems in solid mechanics
37N15 Dynamical systems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Tobias SA, Fishwick W. (1958) Theory of regenerative machine tool chatter. Engineer 205, 199-203, 238-239.
[2] Tlusty J, Polacek M. (1963)The stability of the machine tool against self-excited vibration in machining. In ASME Production Eng. Res. Conf., Pittsburgh, PA, pp. 454-465. New York, NY: ASME.
[3] Hale J. (1977) Theory of functional differential equations. New York, NY: Springer.
[4] Stépán G, Dombóvári Z, Muñoa J. (2011) Identification of cutting force characteristics based on chatter experiments. CIRP Ann. 60, 113-116. (doi:10.1016/j.cirp.2011.03.100)
[5] Shi HM, Tobias SA. (1984) Theory of finite amplitude machine tool instability. Int. J. Mach. Tool Des. Res. 24, 45-69. (doi:10.1016/0020-7357(84)90045-3)
[6] Endres WJ, Loo M. (2002)Modeling cutting process nonlinearity for stability analysis - application to tooling selection for valve-seat machining. In 5th CIRP Int. Workshop on Modeling of Machining, West Lafayette, IN, pp. 71-82, Lexington, KY: University of Kentucky, Center for Robotics and Manufacturing Systems.
[7] Chandiramani NK, Pothala T. (2006) Dynamics of 2-dof regenerative chatter during turning. J. Sound. Vib. 290, 448-464. (doi:10.1016/j.jsv.2005.04.012)
[8] Ahmadi K, Ismail F. (2010) Experimental investigation of process damping nonlinearity in machining chatter. Int. J. Mach. Tool Manuf. 50, 1006-1014. (doi:10.1016/j.ijmachtools.2010.07.002)
[9] Stépán G, Kalmár-Nagy T. (1997)Nonlinear regenerative machine tool vibrations. In Proc. of DETC’97, ASME Design and Technical Conf., Sacramento, CA, pp. 1-11. New York, NY: ASME.
[10] Kalmár-Nagy T, Stépán G, Moon FC. (2001) Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations. Nonlinear Dyn. 26, 121-142. (doi:10.1023/A:1012990608060) · Zbl 1005.70019
[11] Dombóvári Z, Wilson RE, Stépán G. (2008) Estimates of the bistable region in metal cutting. Proc. R. Soc. A 464, 3255-3271. (doi:10.1098/rspa.2008.0156) · Zbl 1186.74048
[12] Nayfeh AH. (2008) Order reduction of retarded nonlinear systems - the method of multiple scales versus center-manifold reduction. Nonlinear Dyn. 51, 483-500. (doi:10.1007/s11071-007-9237-y) · Zbl 1170.70355
[13] Nandakumar K, Wahi P, Chatterjee A. (2010) Infinite dimensional slow modulations in a well known delayed model for cutting tool vibrations. Nonlinear Dyn. 62, 705-716. (doi:10.1007/s11071-010-9755-x) · Zbl 1215.74034
[14] Dombóvári Z, Barton DA, Wilson RE, Stépán G. (2011) On the global dynamics of chatter in the orthogonal cutting model. Int. J. Nonlinear Mech. 46, 330-338. (doi:10.1016/j.ijnonlinmec.2010.09.016)
[15] Dombóvári Z, Stépán G. (2015) On the bistable zone of milling processes. Phil. Trans. R. Soc. A 373, 20140409. (doi:10.1098/rsta.2014.0409)
[16] Hassard BD, Kazarinoff ND, Wan Y-H. (1981) Theory and applications of Hopf bifurcation. London Mathematical Society Lecture Note Series, no. 41. Cambridge, UK: Cambridge University Press.
[17] Guckenheimer J, Holmes P. (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York, NY: Springer. · Zbl 0515.34001
[18] Stépán G. (1989) Retarded dynamical systems. Harlow, UK: Longman. · Zbl 0686.34044
[19] Kuznetsov YA. (1998) Elements of applied bifurcation theory. New York, NY: Springer. · Zbl 0914.58025
[20] Campbell SA. (2009)Calculating centre manifolds for delay differential equations using maple. In Delay differential equations (eds B Balachandran, T Kalmar-Nagy, DE Gilsinn), pp. 221-244. New York, NY: Springer.
[21] Nayfeh AH, Mook DT. (1979) Nonlinear oscillations. New York, NY: Wiley.
[22] Hale J. (1966) Averaging methods for differential equations with retarded arguments and a small parameter. J. Differ. Equ. 2, 57-73. (doi:10.1016/0022-0396(66)90063-5) · Zbl 0151.10302
[23] Hale J, Lunel SMV. (1990) Averaging in infinite dimensions. J. Integral Equ. Appl. 2, 463-494. (doi:10.1216/jiea/1181075583) · Zbl 0755.45012
[24] Lehman B, Weibel SP. (1999) Fundamental theorems of averaging for functional differential equations. J. Differ. Equ. 152, 160-190. (doi:10.1006/jdeq.1998.3523) · Zbl 0930.34044
[25] Sanders JA, Verhulst F, Murdock J. (2007) Averaging methods in nonlinear dynamical systems. New York, NY: Springer. · Zbl 1128.34001
[26] Sari T. (2007)Averaging for ordinary differential equations and functional differential equations. In The strength of nonstandard analysis (eds I van den Berg, V Neves), pp. 286-305. Vienna, Austria: Springer.
[27] Stépán G. (2001) Modelling nonlinear regenerative effects in metal cutting. Phil. Trans. R. Soc. A 359, 739-757. (doi:10.1098/rsta.2000.0753) · Zbl 1169.74431
[28] Campbell SA, Bélair J, Ohira T, Milton J. (1995) Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback. J. Dyn. Differ. Equ. 7, 213-236. (doi:10.1007/BF02218819) · Zbl 0816.34048
[29] Stépán G, Haller G. (1995) Quasiperiodic oscillations in robot dynamics. Nonlinear Dyn. 8, 513-528. (doi:10.1007/BF00045711)
[30] Campbell SA, LeBlanc VG. (1998) Resonant Hopf-Hopf interactions in delay differential equations. J. Dyn. Differ. Equ. 10, 327-346. (doi:10.1023/A:1022622101608) · Zbl 0910.34048
[31] Xu J, Chung K-W, Chan C-L. (2007) An efficient method for studying weak resonant double Hopf bifurcation in nonlinear systems with delayed feedbacks. SIAM J. Appl. Dyn. Syst. 6, 29-60. (doi:10.1137/040614207) · Zbl 1210.34086
[32] Guo S, Chen Y, Wu J. (2008) Two-parameter bifurcations in a network of two neurons with multiple delays. J. Differ. Equ. 244, 444-486. (doi:10.1016/j.jde.2007.09.008) · Zbl 1136.34058
[33] Ma S, Lu Q, Feng Z. (2008) Double Hopf bifurcation for Van der Pol-Duffing oscillator with parametric delay feedback control. J. Math. Anal. Appl. 338, 993-1007. (doi:10.1016/j.jmaa.2007.05.072) · Zbl 1141.34044
[34] Wang W, Xu J. (2011) Multiple scales analysis for double Hopf bifurcation with 1:3 resonance. Nonlinear Dyn. 66, 39-51. (doi:10.1007/s11071-010-9909-x) · Zbl 1388.34063
[35] Bazsó C, Champneys AR, Hős CJ. (2014) Bifurcation analysis of a simplified model of a pressure relief valve attached to a pipe. SIAM J. Appl. Dyn. Syst. 13, 704-721. (doi:10.1137/130922598) · Zbl 1348.37082
[36] Qesmi R, Babram MA. (2014) Double Hopf bifurcation in delay differential equations. Arab J. Math. Sci. 20, 280-301. (doi:10.1016/j.ajmsc.2013.10.002) · Zbl 1323.34084
[37] Shen Z, Zhang C. (2014) Double Hopf bifurcation of coupled dissipative Stuart-Landau oscillators with delay. Appl. Math. Comput. 227, 553-566. (doi:10.1016/j.amc.2013.11.044) · Zbl 1364.37110
[38] Ding Y, Cao J, Jiang W. (2016) Double Hopf bifurcation in active control system with delayed feedback: application to glue dosing processes for particleboard. Nonlinear Dyn. 83, 1567-1576. (doi:10.1007/s11071-015-2431-4) · Zbl 1351.93058
[39] Wahi P, Chatterjee A. (2005) Regenerative tool chatter near a codimension 2 Hopf point using multiple scales. Nonlinear Dyn. 40, 323-338. (doi:10.1007/s11071-005-7292-9) · Zbl 1172.70309
[40] Engelborghs K, Luzyanina T, Roose D. (2002) Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28, 1-21. (doi:10.1145/513001.513002) · Zbl 1070.65556
[41] Roose D, Szalai R. (2007)Continuation and bifurcation analysis of delay differential equations. In Numerical continuation methods for dynamical systems: path following and boundary value problems (eds B Krauskopf, HM Osinga, J Galán-Vioque), pp. 359-399. Dordrecht, The Netherlands: Springer. · Zbl 1132.34001
[42] Szalai R. 2005-2013 Knut: a continuation and bifurcation software for delay-differential equations. See http://rs1909.github.io/knut/.
[43] Knobloch E. (1986) Normal form coefficients for the nonresonant double Hopf bifurcation. Phys. Lett. A 116, 365-369. (doi:10.1016/0375-9601(86)90057-5)
[44] Wang W, Xu J, Sun X. (2013) Strong and weak resonances in delayed differential systems. Int. J. Bifurcat. Chaos 23, 1350119. (doi:10.1142/S0218127413501198) · Zbl 1275.34094
[45] Molnár TG, Insperger T, Stépán G. (2016) Analytical estimations of limit cycle amplitude for delay-differential equations. Electron. J. Qual. Theory Differ. Equ. 2016, 1-10. (doi:10.14232/ejqtde.2016.1.77) · Zbl 1389.37027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.