×

zbMATH — the first resource for mathematics

Rota-Baxter operators on quadratic algebras. (English) Zbl 1431.17003
Summary: We prove that all Rota-Baxter operators on a quadratic division algebra are trivial. For nonzero weight, we state that all Rota-Baxter operators on the simple odd-dimensional Jordan algebra of bilinear form are projections on a subalgebra along another one. For weight zero, we find a connection between the Rota-Baxter operators and the solutions to the alternative Yang-Baxter equation on the Cayley-Dickson algebra. We also investigate the Rota-Baxter operators on the matrix algebras of order two, the Grassmann algebra of plane, and the Kaplansky superalgebra.

MSC:
17A45 Quadratic algebras (but not quadratic Jordan algebras)
17C50 Jordan structures associated with other structures
16T25 Yang-Baxter equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aguiar, M., Pre-Poisson algebras, Lett. Math. Phys., 54, 263-277, (2000) · Zbl 1032.17038
[2] Aguiar, M., On the associative analog of Lie bialgebras, J. Algebra, 244, 492-532, (2001) · Zbl 0991.16033
[3] An, H.; Bai, C., From Rota-Baxter algebras to pre-Lie algebras, J. Phys. A. Math. Theor., 1, 015201, (2008) · Zbl 1132.81031
[4] Bai, C.; Bellier, O.; Guo, L.; Ni, X., Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Not., 3, 485-524, (2013) · Zbl 1314.18010
[5] Baxter, G., An analytic problem whose solution follows from a simple algebraic identity, Pac. J. Math., 10, 731-742, (1960) · Zbl 0095.12705
[6] Belavin, AA; Drinfel’d, VG, Solutions of the classical Yang-Baxter equation for simple Lie algebras, Funct. Anal. Appl., 16, 159-180, (1982) · Zbl 0504.22016
[7] Bragança, SL, Finite dimensional Baxter algebras, Stud. Appl. Math., 54, 75-89, (1975) · Zbl 0344.60044
[8] Ebrahimi-Fard, K., Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys., 61, 139-147, (2002) · Zbl 1035.17001
[9] Flanders, H., On spaces of linear transformations with bounded rank, J. Lond. Math. Soc., 37, 10-16, (1962) · Zbl 0101.25403
[10] Gantmacher, F.R.: The Theory of Matrices, vol. 2. Chelsea, New York (1959) · Zbl 0085.01001
[11] Goncharov, ME, The classical Yang-Baxter equation on alternative algebras: the alternative D-bialgebra structure on Cayley-Dickson matrix algebras, Sib. Math. J., 48, 809-823, (2007) · Zbl 1164.17022
[12] Goncharov, ME, On Rota-Baxter operators of non-zero weight arisen from the solutions of the classical Yang-Baxter equation, Sib. Electron. Math. Rep., 14, 1533-1544, (2017) · Zbl 1384.16024
[13] Gubarev, V., Rota-Baxter operators of weight zero on simple Jordan algebra of Clifford type, Sib. Electron. Math. Rep., 14, 1524-1532, (2017) · Zbl 1432.17037
[14] Gubarev, V.; Kolesnikov, P., Embedding of dendriform algebras into Rota-Baxter algebras, Cent. Eur. J. Math., 11, 226-245, (2013) · Zbl 1262.18009
[15] Guo, L.: An introduction to Rota—Baxter algebra. In: Surveys of Modern Mathematics. vol. 4. Beijing: Higher Education Press (2012) · Zbl 1271.16001
[16] Guo, L.; Ebrahimi-Fard, K., Rota-Baxter algebras and dendriform algebras, J. Pure Appl. Algebra, 212, 320-339, (2008) · Zbl 1132.16032
[17] Guo, L.; Keigher, W., On differential Rota-Baxter algebras, J. Pure Appl. Algebra, 212, 522-540, (2008) · Zbl 1185.16038
[18] Jian, R-Q, Quasi-idempotent Rota-Baxter operators arising from quasi-idempotent elements, Lett. Math. Phys., 107, 367-374, (2017) · Zbl 1361.16027
[19] Kolesnikov, PS, Homogeneous averaging operators on simple finite conformal Lie algebras, J. Math. Phys., 56, 071702, (2015) · Zbl 1330.17034
[20] Li, XX; Hou, DP; Bai, CM, Rota-Baxter operators on pre-Lie algebras, J. Nonlinear Math. Phys., 14, 269-289, (2007) · Zbl 1203.17016
[21] Meshulam, R., On the maximal rank in a subspace of matrices, Q. J. Math. Oxf., 36, 225-229, (1985) · Zbl 0565.15006
[22] Pan, Yu; Liu, Q.; Bai, C.; Guo, L., Post-Lie algebra structures on the Lie algebra \({\rm sl}(2,\mathbb{C})\), Electron. J. Linear Algebra, 23, 180-197, (2012)
[23] Pei, J.; Bai, C.; Guo, L., Rota-Baxter operators on \({\rm sl} (2,\mathbb{C})\) and solutions of the classical Yang-Baxter equation, J. Math. Phys., 55, 021701, (2014) · Zbl 1287.82011
[24] Pozhidaev, AP, 0-Dialgebras with bar-unity and nonassociative Rota-Baxter algebras, Sib. Math. J., 50, 1070-1080, (2009) · Zbl 1224.17003
[25] Rota, G-C, Baxter algebras and combinatorial identities, I. Bull. Am. Math. Soc., 75, 325-329, (1969) · Zbl 0192.33801
[26] Rota, G.-C.: Gian-Carlo Rota on combinatorics, introductory papers and commentaries. Birkhäuser, Boston (1995) · Zbl 0841.01031
[27] Semenov-Tyan-Shanskii, MA, What is a classical \(r\)-matrix?, Funct. Anal. Appl., 17, 259-272, (1983) · Zbl 0535.58031
[28] Tang, X.; Zhang, Y.; Sun, Q., Rota-Baxter operators on 4-dimensional complex simple associative algebras, Appl. Math. Comput., 229, 173-186, (2014) · Zbl 1366.16022
[29] Zhelyabin, VN, Jordan bialgebras of symmetric elements and Lie bialgebras, Sib. Math. J., 39, 261-276, (1998) · Zbl 0903.17013
[30] Zhevlakov, K.A., Slin’ko, A.M., Shestakov, I.P., Shirshov, A.I.: Rings that are Nearly Associative. Academic Press, New York (1982) · Zbl 0487.17001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.