Eastwood, Michael; Slovák, Jan Calculus on symplectic manifolds. (English) Zbl 1463.53085 Arch. Math., Brno 54, No. 5, 265-280 (2018). The main result of the article is the following.Theorem. If \(M^{2n}\) is a symplectic manifold and \(\nabla_a\) is its symplectic connection, then there is a natural vector bundle on \(M^{2n}\) of rank \(2(n+1)\) equipped with a connection, which is symplectically flat if and only if the Riemannian curvature tensor \(R_{ab}{}^c{}_d\) of \(\nabla_a\) has a special form:\[R_{ab}{}^c{}_d=\delta_a^c\,P_{bd}-\delta_b^c\,P_{ad}+J_{ad}\,P_{be}\,J^{ce}-J_{bd}\,P_{ae}\,J^{ce}+2J_{ab}\,P_{de}\,J^{ce}\] where \(P_{ab}\) is a symmetric tensor.Some important particular cases when \(P_{ab}\) is the standard metric and more generally, when the symplectic connection arises from a Kählerian metric are studied. It is proved that a symplectic tractor connection on a Kählerian manifold is symplectically flat if and only if the metric of the manifold has constant holomorphic sectional curvature.On complex projective space \(\mathbb{C}P_n\), a Bernstein-Gelfand-Gelfand-like series of differential complexes is constructed. Reviewer: Mihail Banaru (Smolensk) MSC: 53D05 Symplectic manifolds (general theory) 53B35 Local differential geometry of Hermitian and Kählerian structures Keywords:symplectic structure; Kählerian structure; complex projective space; BGG-complex; symplectic connection; tractor calculus × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Bailey, T. N.; Eastwood, M. G.; Gover, A. R., Thomas’s structure bundle for conformal, projective and related structures, Rocky Mountain J. Math. 24 (1994), 1191-1217 · Zbl 0828.53012 · doi:10.1216/rmjm/1181072333 [2] Bryant, R. L.; Eastwood, M. G.; Gover, A. R.; Neusser, K., Some differential complexes within and beyond parabolic geometry, arXiv:1112.2142 [3] Cahen, M.; Schwachofer, L. J., Special symplectic connections, J. Differential Geom. 83 (2009), 229-271 · Zbl 1190.53019 · doi:10.4310/jdg/1261495331 [4] Čap, A.; Salač, T., Parabolic conformally symplectic structures I; definition and distinguished connections, Forum Math., to appear, arXiv:1605.01161 · Zbl 1405.53042 [5] Čap, A.; Salač, T., Parabolic conformally symplectic structures II; parabolic contactization, Ann. Mat. Pura Appl., to appear, arXiv:1605.01897 · Zbl 1410.53078 [6] Čap, A.; Salač, T., Parabolic conformally symplectic structures III; invariant differential operators and complexes, arXiv:1701.01306 [7] Čap, A.; Salač, T., Pushing down the Rumin complex to conformally symplectic quotients, Differential Geom. Appl. 35 (2014), 255-265, arXiv:1312.2712 · Zbl 1319.58019 · doi:10.1016/j.difgeo.2014.05.004 [8] Čap, A.; Slovák, J., Parabolic Geometries I: Background and General Theory, Math. Surveys Monogr. 154 (209) · Zbl 1183.53002 [9] Eastwood, M. G., Extensions of the coeffective complex, Illinois J. Math. 57 (2013), 373-381 · Zbl 1297.58005 [10] Eastwood, M. G.; Goldschmidt, H., Zero-energy fields on complex projective space, J. Differential Geom. 94 (2013), 129-157 · Zbl 1276.53080 · doi:10.4310/jdg/1361889063 [11] Eastwood, M. G.; Slovák, J., Conformally Fedosov manifolds, arXiv:1210. 5597 [12] Gelfand, I. M.; Retakh, V. S.; Shubin, M. A., Fedosov manifolds, Adv. Math. 136 (1998), 104-140 · Zbl 0945.53047 · doi:10.1006/aima.1998.1727 [13] Knapp, A. W., Lie Groups, Lie Algebras, and Cohomology, Princeton University Press, 1988 · Zbl 0648.22010 [14] Kostant, B., Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329-387 · Zbl 0134.03501 · doi:10.2307/1970237 [15] Penrose, R.; Rindler, W., Spinors and Space-time, vol. 1, Cambridge University Press, 1984 · Zbl 0538.53024 [16] Seshadri, N. [17] Smith, R. T., Examples of elliptic complexes, Bull. Amer. Math. Soc. (N.S.) 82 (1976), 294-299 · Zbl 0357.35062 · doi:10.1090/S0002-9904-1976-14028-1 [18] Tseng, L.-S.; Yau, S.-T., Cohomology and Hodge theory on symplectic manifolds: I and II, J. Differential Geom. 91 (2012), 383-416, 417-443 · Zbl 1275.53079 · doi:10.4310/jdg/1349292670 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.