Herczeg, Gabriel; Latini, Emanuele; Waldron, Andrew Contact quantization: quantum mechanics = parallel transport. (English) Zbl 1463.81017 Arch. Math., Brno 54, No. 5, 281-298 (2018). Summary: Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as points on an underlying phase-spacetime and reduces classical mechanics to contact topology. Contact quantization describes quantum dynamics in terms of parallel transport for a flat connection; the ultimate goal being to also handle quantum systems in terms of contact topology. Our main result is a proof of local, formal gauge equivalence for a broad class of quantum dynamical systems – just as classical dynamics depends on choices of clocks, local quantum dynamics can be reduced to a problem of studying gauge transformations. We further show how to write quantum correlators in terms of parallel transport and in turn matrix elements for Hilbert bundle gauge transformations, and give the path integral formulation of these results. Finally, we show how to relate topology of the underlying contact manifold to boundary conditions for quantum wave functions. Cited in 1 Document MSC: 81S10 Geometry and quantization, symplectic methods 53D10 Contact manifolds (general theory) Keywords:quantum mechanics; contact geometry; quantization; contact topology; flat connections; clock ambiguity PDF BibTeX XML Cite \textit{G. Herczeg} et al., Arch. Math., Brno 54, No. 5, 281--298 (2018; Zbl 1463.81017) Full Text: DOI arXiv References: [1] Albrecht, A.; Iglesias, A., The clock ambiguity and the emergence of physical laws, Phys. Rev. D 77 (2008), 063506; arXiv:0708.2743 [hep-th]; S. B. Gryb, Jacobi’s Principle and the Disappearance of Time Phys. Rev. D 81 (2010), 044035, arXiv:0804.2900 [gr-qc]; S. B. Gryb and K. Thebault, The role of time in relational quantum theories Found. Phys. 42 (2012),1210-1238 arXiv:1110.2429 [gr-qc] [2] Batalin, I.; Fradkin, E.; Fradkina, T., Another version for operatorial quantization of dynamical systems with irreducible constraints, Nuclear Phys. B 314 (1989), 158-174, I.A. Batalin and I.V. Tyutin, Existence theorem for the effective gauge algebra in the generalized canonical formalism with abelian conversion of second-class constraints, Internat. J. Modern Phys. A 6 (1991), 3255-3282 [3] Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D., Quantum Mechanics as a deformation of classical mechanics, Lett. Math. Phys. 1 (1977), 521-530 [4] Bieliavsky, P.; Cahen, M.; Gutt, S.; Rawnsley, J.; Schwachhöfer, L., Symplectic connection, Int. J. Geom. Methods Mod. Phys. 3 (2006), 375-426, arXiv:math/0511194 · Zbl 1095.53052 [5] Bruce, A. J., Contact structures and supersymmetric mechanics, arXiv:1108.5291 [math-ph] [6] Čap, A.; Slovák, J., (2009) [7] Cattaneo, A. S.; Felder, G., A path integral approach to the Kontsevich quantization formula, Comm. Math. Phys. 212 (2000), 591-611, arXiv:math/9902090 · Zbl 1038.53088 [8] Dupré, M. J., Classifying Hilbert bundles, J. Funct. Anal. 15 (1974), 244-278 · Zbl 0275.46050 [9] Fedosov, B. V., A simple geometrical construction of deformation quantization, J. Differential Geom. 40 (1994), 213-238 · Zbl 0812.53034 [10] Fitzpatrick, S., On the geometric quantization of contact manifolds, J. Geom. Phys. 61 (2011), 2384-2399 · Zbl 1251.32029 [11] Fox, D. J.F., Contact projective structures, Indiana Univ. Math. J. 54 (2005), 1547-1598, arXiv:math/0402332 · Zbl 1093.53083 [12] Fradkin, E. S.; Vilkovisky, G., Quantization of relativistic systems with constraints, Phys. Lett. B 55 (1975), 224-226, I.A. Batalin and G.A. Vilkovisky, Relativistic s-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. B 69 (1977), 309-312; E.S. Fradkin and T. Fradkina, Phys. Lett. B 72 (1978), 343-348; I. Batalin and E.S. Fradkin, La Rivista del Nuovo Cimento 9 (1986), 1-48 · Zbl 0967.81532 [13] Geiges, H., An Introduction to Contact Topology, Cambridge University Pres, 2008, and P. Ševera, Contact geometry in lagrangian mechanics, J. Geom. Phys. 29 (1999), 235-242; A. Bravetti, C.S. Lopez-Monsalvo and F. Nettel, Contact symmetries and Hamiltonian thermodynamics, Ann. Phys. 361 (2015), 377-400, arXiv:1409.7340; A. Bravetti, H. Cruz and D. Tapias, Contact Hamiltonian dynamics, arXiv:1604.08266[math-ph] [14] Grigoriev, M. A.; Lyakhovich, S. L., Fedosov Deformation Quantization as a BRST Theory, Comm. Math. Phys. 218 (2001), 437-457, hep-th/0003114. See also G. Barnich and M. Grigoriev, A. Semikhatov and I. Tipunin, Parent Field Theory and Unfolding in BRST First-Quantized Terms, 260, (2005), 147-181, hep-th/0406192 · Zbl 1024.53055 [15] Gukov, S.; Witten, E., Branes and quantization, Adv. Theor. Math. Phys. 13 (2009), 1445-1518, arXiv:0809.0305 [hep-th] · Zbl 1247.81378 [16] Herczeg, G.; Waldron, A., Contact geometry and quantum mechanics, Phys.Lett. B 781 (2018), 312-315, arXiv:1709.04557 [hep-th] · Zbl 1398.81107 [17] Kashiwara, M., Quantization of contact manifolds, Publ. Res. Inst. Math. Sci. 32 (1) (1996), 1-7 · Zbl 0874.53027 [18] Kontsevich, M., Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), 157-216, arXiv:q-alg/9709040 · Zbl 1058.53065 [19] Krýsl, S., Cohomology of the de Rham complex twisted by the oscillatory representation, Differential Geom. Appl. 33 (2014), 290-297, arXiv:1304.5704 [math.DG] · Zbl 1294.58001 [20] Małkiewicz, P.; Miroszewski, A., Internal clock formulation of quantum mechanics, Phys. Rev. D 96 (2017), 046003, arXiv:1706.00743 [gr-qc] [21] Manin, Y., Topics in Noncommutative Geometry, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1991 · Zbl 0724.17007 [22] Rajeev, S. G., Quantization of contact manifolds and thermodynamics, Ann. Physics 323 (2008), 768-782 · Zbl 1137.81024 [23] Schwarz, A. S., Superanalogs of symplectic and contact geometry and their applications to quantum field theory, Topics in statistical and theoretical physics, vol. 177, Amer. Math. Soc. Transl. Ser. 2, 1996, Adv. Math. Sci., 32, arXiv:hep-th/9406120, pp. 203-218 · Zbl 0873.58004 [24] Yoshioka, A., Contact Weyl manifold over a symplectic manifold. Lie groups, geometric structures and differential equations - one hundred years after Sophus Lie, Adv. Stud. Pure Math. 37 (2002), 459-493, A. Yoshioka, Il Nuov. Cim. 38C (2015), 173 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.