×

zbMATH — the first resource for mathematics

Large-scale and global maximization of the distance to instability. (English) Zbl 1404.65024

MSC:
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
90C26 Nonconvex programming, global optimization
93D09 Robust stability
93D15 Stabilization of systems by feedback
49K35 Optimality conditions for minimax problems
Software:
GradSamp; HANSO; HIFOO
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] P. Apkarian and D. Noll, Controller design via nonsmooth multidirectional search, SIAM J. Control Optim., 44 (2006), pp. 1923–1949. · Zbl 1139.93012
[2] P. Apkarian and D. Noll, Nonsmooth \({H}_∞\) synthesis, IEEE Trans. Automat. Control, 51 (2006), pp. 71–86.
[3] P. Apkarian, D. Noll, and O. Prot, A trust region spectral bundle method for nonconvex eigenvalue optimization, SIAM J. Optim., 19 (2008), pp. 281–306. · Zbl 1167.90015
[4] D. Arzelier, D. Georgia, S. Gumussoy, and D. Henrion, \({H}_2\) for HIFOO, preprint, (2010).
[5] V. Blondel and J. N. Tsitsiklis, NP-hardness of some linear control design problems, SIAM J. Control Optim., 35 (1997), pp. 2118–2127. · Zbl 0892.93050
[6] S. Boyd and V. Balakrishnan, A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its \({L}_{∞}\)-norm, Systems Control Lett., 15 (1990), pp. 1–7. · Zbl 0704.93014
[7] L. Breiman and A. Cutler, A deterministic algorithm for global optimization, Math. Program., 58 (1993), pp. 179–199, . · Zbl 0807.90103
[8] N. A. Bruinsma and M. Steinbuch, A fast algorithm to compute the \({H}_{∞}\)-norm of a transfer function matrix, Systems Control Lett., 14 (1990), pp. 287–293. · Zbl 0699.93021
[9] A. Bunse-Gerstner, R. Byers, V. Mehrmann, and N. K. Nichols, Numerical computation of an analytic singular value decomposition of a matrix valued function, Numer. Math., 60 (1991), pp. 1–39. · Zbl 0743.65035
[10] J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton, HIFOO – A MATLAB package for fixed-order controller design and \(H_∞\) optimization, IFAC Proc., 39 (2006), pp. 339–344.
[11] J. V. Burke, A. S. Lewis, and M. L. Overton, Optimal stability and eigenvalue multiplicity, Found. Comput. Math., 1 (2001), pp. 205–225. · Zbl 0994.15022
[12] J. V. Burke, A. S. Lewis, and M. L. Overton, Optimizing matrix stability, Proc. Amer. Math. Soc., 129 (2001), pp. 1635–1642. · Zbl 0965.15020
[13] J. V. Burke, A. S. Lewis, and M. L. Overton, Two numerical methods for optimizing matrix stability, Linear Algebra Appl., 351–352 (2002), pp. 117–145. · Zbl 1005.65041
[14] J. V. Burke, A. S. Lewis, and M. L. Overton, A nonsmooth, nonconvex optimization approach to robust stabilization by static output feedback and low-order controllers, IFAC Proc., 36 (2003), pp. 175–181.
[15] J. V. Burke, A. S. Lewis, and M. L. Overton, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization, SIAM J. Optim., 15 (2005), pp. 751–779. · Zbl 1078.65048
[16] R. Byers, A bisection method for measuring the distance of a stable matrix to the unstable matrices, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 875–881. · Zbl 0658.65044
[17] M. A. Freitag, A. Spence, and P. Van Dooren, Calculating the \({H}_∞\)-norm using the implicit determinant method, Linear Algebra Appl., 35 (2014), pp. 619–635. · Zbl 1305.65161
[18] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996. · Zbl 0865.65009
[19] M. Gu, New methods for estimating the distance to uncontrollability, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 989–1003. · Zbl 0954.65056
[20] M. Gu, E. Mengi, M. L. Overton, J. Xia, and J. Zhu, Fast methods for estimating the distance to uncontrollability, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 477–502. · Zbl 1115.65069
[21] N. Guglielmi, M. Gürbüzbalaban, and M. L. Overton, Fast approximation of the \({H}_∞\) norm via optimization over spectral value sets, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 709–737. · Zbl 1271.93057
[22] S. Gumussoy, D. Henrion, M. Millstone, and M. L. Overton, Multiobjective robust control with HIFOO 2.0, IFAC Proc., 42 (2009), pp. 144–149.
[23] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985. · Zbl 0576.15001
[24] Y. S. Hung and A. G. J. MacFarlane, Multivariable Feedback: A Quasi-Classical Approach, Springer, Berlin, 1982. · Zbl 0498.93004
[25] F. Kangal, K. Meerbergen, E. Mengi, and W. Michiels, A subspace method for large scale eigenvalue optimization, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 48–82. · Zbl 1378.65090
[26] D. Kressner and B. Vandereycken, Subspace methods for computing the pseudospectral abscissa and the stability radius, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 292–313. · Zbl 1306.65187
[27] V. Kungurtsev, W. Michiels, and M. Diehl, An Inequality-Constrained SL/QP Method for Minimizing the Spectral Abscissa, preprint, (2014). · Zbl 1390.90417
[28] P. Lancaster, On eigenvalues of matrices dependent on a parameter, Numer. Math., 6 (1964), pp. 377–387. · Zbl 0133.26201
[29] C. Mehl, V. Mehrmann, and P. Sharma, Stability radii for linear Hamiltonian systems with dissipation under structure-preserving perturbations, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1625–1654, . · Zbl 1349.93332
[30] E. Mengi, A support function based algorithm for optimization with eigenvalue constraints, SIAM J. Optim., 27 (2017), pp. 246–268. · Zbl 1359.65094
[31] E. Mengi, Large-Scale and Global Maximization of the Distance to Instability, preprint, (2018).
[32] E. Mengi, Maximization of Distance to Instability: MATLAB Routines, (2018).
[33] E. Mengi, E. A. Yildirim, and M. Kilic, Eigopt: Software for Eigenvalue Optimization, (2014).
[34] E. Mengi, E. A. Yildirim, and M. Kiliç, Numerical optimization of eigenvalues of Hermitian matrix functions, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 699–724, . · Zbl 1307.65043
[35] A. Nemirovskii, Several NP-hard problems arising in robust stability analysis, Math. Control Signals Systems, 6 (1993), pp. 99–105. · Zbl 0792.93100
[36] M. L. Overton, HANSO: A Hybrid Algorithm for Nonsmooth Optimization, (2009).
[37] C. F. Van Loan, How near is a stable matrix to an unstable matrix?, Contemp. Math., 47 (1985), pp. 465–478. · Zbl 0576.15011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.