×

Nonlinearities distribution homotopy perturbation method applied to solve nonlinear problems: Thomas-Fermi equation as a case study. (English) Zbl 1435.65115

Summary: We propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation method (NDHPM). Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F, by establishing the accuracy of the results.

MSC:

65L99 Numerical methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Landau, L.; Lifshitz, E. M., Mecánica Cuántica No Relativista (1967), Editorial Reverte, S. A.
[2] Assas, L. M. B., Approximate solutions for the generalized KdV-Burgers’ equation by He’s variational iteration method, Physica Scripta, 76, 2, 161-164 (2007) · Zbl 1128.35091
[3] Kazemnia, M.; Zahedi, S. A.; Vaezi, M.; Tolou, N., Arsenic contamination in New Orleans soil: temporal changes associated with flooding, Journal of Applied Sciences, 8, 22, 4192-4197 (2008)
[4] Noorzad, R.; Poor, A. T.; Omidvar, M., Variational iteration method and homotopy-perturbation method for solving Burgers equation in fluid dynamics, Journal of Applied Sciences, 8, 2, 369-373 (2008)
[5] Evans, D. J.; Raslan, K. R., The tanh function method for solving some important non-linear partial differential equations, International Journal of Computer Mathematics, 82, 7, 897-905 (2005) · Zbl 1075.65125
[6] Mahmoudi, J.; Tolou, N.; Khatami, I.; Barari, A.; Ganji, D. D., Explicit solution of nonlinear ZK-BBM wave equation using Exp-function method, Journal of Applied Sciences, 8, 2, 358-363 (2008)
[7] Adomian, G., A review of the decomposition method in applied mathematics, Journal of Mathematical Analysis and Applications, 135, 2, 501-544 (1988) · Zbl 0671.34053
[8] Babolian, E.; Biazar, J., On the order of convergence of Adomian method, Applied Mathematics and Computation, 130, 2-3, 383-387 (2002) · Zbl 1044.65043
[9] Kooch, A.; Abadyan, M., Efficiency of modified Adomian decomposition for simulating the instability of nano-electromechanical switches: comparison with the conventional decomposition method, Trends in Applied Sciences Research, 7, 1, 57-67 (2012)
[10] Khan, Y.; Vázquez-Leal, H.; Faraz, N., An auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations, Applied Mathematical Modelling, 37, 5, 2702-2708 (2013) · Zbl 1352.65172
[11] Vanani, S. K.; Heidari, S.; Avaji, M., A low-cost numerical algorithm for the solution of nonlinear delay boundary integral equations, Journal of Applied Sciences, 11, 20, 3504-3509 (2011)
[12] Chowdhury, S. H., A comparison between the modified homotopy perturbation method and adomian decomposition method for solving nonlinear heat transfer equations, Journal of Applied Sciences, 11, 7, 1416-1420 (2011)
[13] Zhang, L.-N.; Xu, L., Determination of the limit cycle by He’s parameter expansion for oscillators in a \(u^3/1 + u^2\) potential, Zeitschrift für Naturforschung—Section A Journal of Physical Sciences, 62, 7-8, 396-398 (2007) · Zbl 1203.34053
[14] Vazquez-Leal, H.; Castaneda-Sheissa, R.; Filobello-Nino, U.; Sarmiento-Reyes, A.; Sanchez Orea, J., High accurate simple approximation of normal distribution integral, Mathematical Problems in Engineering, 2012 (2012)
[15] He, J.-H., Some asymptotic methods for strongly nonlinear equations, International Journal of Modern Physics B, 20, 10, 1141-1199 (2006) · Zbl 1102.34039
[16] Fereidoon, A.; Rostamiyan, Y.; Akbarzade, M.; Ganji, D. D., Application of He’s homotopy perturbation method to nonlinear shock damper dynamics, Archive of Applied Mechanics, 80, 6, 641-649 (2010) · Zbl 1271.70052
[17] Vázquez-Leal, H.; Filobello-Niño, U.; Castañeda-Sheissa, R.; Hernández-Martínez, L.; Sarmiento-Reyes, A., Modified HPMs inspired by homotopy continuation methods, Mathematical Problems in Engineering, 2012 (2012) · Zbl 1264.65131
[18] Khan, Y.; Vázquez-Leal, H.; Wu, Q., An efficient iterated method for mathematical biology model, Neural Computing and Applications, 23, 3-4, 677-682 (2013)
[19] Khan, Y.; Vázquez-Leal, H.; Faraz, N., An efficient new iterative method for oscillator differential equation, Scientia Iranica, 19, 6, 1473-1477 (2012)
[20] Biazar, J.; Aminikhah, H., Study of convergence of homotopy perturbation method for systems of partial differential equations, Computers & Mathematics with Applications, 58, 11-12, 2221-2230 (2009) · Zbl 1189.65246
[21] Biazar, J.; Ghazvini, H., Convergence of the homotopy perturbation method for partial differential equations, Nonlinear Analysis: Real World Applications, 10, 5, 2633-2640 (2009) · Zbl 1173.35395
[22] Khan, Y.; Wu, Q., Homotopy perturbation transform method for nonlinear equations using He’s polynomials, Computers and Mathematics with Applications, 61, 8, 1963-1967 (2011) · Zbl 1219.65119
[23] Noor, M. A.; Mohyud-Din, S. T., Homotopy perturbation method for solving Thomas-Fermi equation using pade approximants, International Journal of Nonlinear Science, 8, 1, 27-31 (2009) · Zbl 1183.65086
[24] Ganji, D. D.; Sahouli, A. R.; Famouri, M., A new modification of He’s homotopy perturbation method for rapid convergence of nonlinear undamped oscillators, Journal of Applied Mathematics and Computing, 30, 1-2, 181-192 (2009) · Zbl 1180.34011
[25] Turkyilmazoglu, M., Some issues on HPM and HAM methods: a convergence scheme, Mathematical and Computer Modelling, 53, 9-10, 1929-1936 (2011) · Zbl 1219.65083
[26] Turkyilmazoglu, M., Convergence of the homotopy perturbation method, International Journal of Nonlinear Sciences and Numerical Simulation, 12, 1-8, 9-14 (2011) · Zbl 1401.35024
[27] Filobello-Niño, U.; Vazquez-Leal, H.; Castañeda-Sheissa, R.; Yildirim, A.; Hernandez-Martinez, L.; Pereyra Díaz, D.; Pérez Sesma, A.; Hoyos Reyes, C., An approximate solution of Blasius equation by using HPM method, Asian Journal of Mathematics and Statistics, 5, 2, 50-59 (2012)
[28] Marinca, V.; Herisanu, N., Nonlinear Dynamical Systems in Engineering (2011), Berlin, Germany: Springer, Berlin, Germany · Zbl 1244.65104
[29] Patel, T.; Mehta, M. N.; Pradhan, V. H., The numerical solution of Burger’s equation arising into the irradiation of tumour tissue in biological diffusing system by homotopy analysis method, Asian Journal of Applied Sciences, 5, 1, 60-66 (2012)
[30] Liao, S., Advances in the Homotopy Analysis Method (2014), Hackensack, NJ, USA: World Scientific, Hackensack, NJ, USA · Zbl 1283.35003
[31] Turkyilmazoglu, M., Analytic approximate solutions of rotating disk boundary layer flow subject to a uniform suction or injection, International Journal of Mechanical Sciences, 52, 12, 1735-1744 (2010)
[32] Turkyilmazoglu, M., Purely analytic solutions of the compressible boundary layer flow due to a porous rotating disk with heat transfer, Physics of Fluids, 21, 10 (2009) · Zbl 1183.76529
[33] Filobello-Nino, U.; Vazquez-Leal, H.; Benhammouda, B.; Hernandez-Martinez, L.; Khan, Y.; Jimenez-Fernandez, V. M.; Herrera-May, A. L.; Castaneda-Sheissa, R.; Pereyra-Diaz, D.; Cervantes-Perez, J.; Perez-Sesma, J. A. A.; Hernandez-Machuca, S. F.; Cuellar-Hernandez, L., A handy approximation for a mediated bioelectrocatalysis process, related to Michaelis-Menten equation, SpringerPlus, 3, article 162 (2014)
[34] Filobello-Nino, U.; Vazquez-Leal, H.; Khan, Y.; Yildirim, A.; Jimenez-Fernandez, V. M.; Herrera-May, A. L.; Castaneda-Sheissa, R.; Cervantes-Perez, J., Using perturbation methods and Laplace-Padé approximation to solve nonlinear problems, Miskolc Mathematical Notes, 14, 1, 89-101 (2013) · Zbl 1299.37063
[35] Filobello-Niño, U.; Vazquez-Leal, H.; Khan, Y.; Perez-Sesma, A.; Diaz-Sanchez, A.; Herrera-May, A.; Pereyra-Diaz, D.; Castaneda-Sheissa, R.; Jimenez-Fernandez, V. M.; Cervantes-Perez, J., A handy exact solution for flow due to a stretching boundary with partial slip, Revista Mexicana de Física E, 59, 1, 51-55 (2013)
[36] Fernandez, F. M., Rational approximation to the Thomas-Fermi equations, Applied Mathematics and Computation, 217, 13, 6433-6436 (2011) · Zbl 1210.81133
[37] Yao, B., A series solution to the Thomas-Fermi equation, Applied Mathematics and Computation, 203, 1, 396-401 (2008) · Zbl 1161.34303
[38] Khan, H.; Xu, H., Series solution to the Thomas-Fermi equation, Physics Letters A, 365, 1-2, 111-115 (2007) · Zbl 1203.81060
[39] Parand, K.; Shahini, M., Rational Chebyshev pseudospectral approach for solving Thomas-Fermi equation, Physics Letters A, 373, 2, 210-213 (2009) · Zbl 1227.49050
[40] Hille, E., On the Thomas-Fermi equation, Proceedings of the National Academy of Sciences of the United States of America, 62, 7-10 (1969) · Zbl 0179.12903
[41] Turkyilmazoglu, M., Solution of the Thomas-Fermi equation with a convergent approach, Communications in Nonlinear Science and Numerical Simulation, 17, 11, 4097-4103 (2012) · Zbl 1316.34020
[42] Zill, D. G., A First Course in Differential Equations with Modeling Applications (2012), Brooks Cole
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.