×

zbMATH — the first resource for mathematics

FOM – a MATLAB toolbox of first-order methods for solving convex optimization problems. (English) Zbl 07001349
Summary: This paper presents the FOM MATLAB toolbox for solving convex optimization problems using first-order methods. The diverse features of the eight solvers included in the package are illustrated through a collection of examples of different nature.

MSC:
65K05 Numerical mathematical programming methods
90C25 Convex programming
Software:
CVX; FOM; Matlab; SDPT3; SeDuMi; TFOCS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Convex analysis and monotone operator theory in Hilbert spaces, in CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 2nd ed., Springer, Cham, 2017. With a foreword by Hédy Attouch
[2] First-order methods in optimization, volume 25 of MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; 2017
[3] Beck, A.; Teboulle, M., A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2, 1, 183-202, (2009) · Zbl 1175.94009
[4] Gradient-based algorithms with applications to signal-recovery problems, in Convex Optimization in Signal Processing and Communications, Cambridge University Press, Cambridge, 2010, pp. 42–88 · Zbl 1211.90290
[5] Beck, A.; Teboulle, M., Smoothing and first order methods: a unified framework, SIAM J. Optim., 22, 2, 557-580, (2012) · Zbl 1251.90304
[6] Beck, A.; Teboulle, M., A fast dual proximal gradient algorithm for convex minimization and applications, Oper. Res. Lett., 42, 1, 1-6, (2014) · Zbl 1408.90232
[7] Beck, A.; Ben-Tal, A.; Guttmann-Beck, N.; Tetruashvili, L., The CoMirror algorithm for solving nonsmooth constrained convex problems, Oper. Res. Lett., 38, 6, 493-498, (2010) · Zbl 1202.90209
[8] Becker, S. R.; Candès, E. J.; Grant, M. C., Templates for convex cone problems with applications to sparse signal recovery, Math. Program. Comput., 3, 3, 165-218, (2011) · Zbl 1257.90042
[9] Combettes, P. L.; Wajs, V. R., Signal recovery by proximal forward–backward splitting, Multiscale Model. Simul., 4, 4, 1168-1200, (2005) · Zbl 1179.94031
[10] Donoho, D. L., De-noising by soft-thresholding, IEEE Trans. Inf. Theory, 41, 3, 613-627, (1995) · Zbl 0820.62002
[11] Composite Objective Mirror Descent, in COLT 2010 – The 23rd Conference on Learning Theory, Haifa, Israel, 2010, pp. 14–26
[12] Eckstein, J., Some saddle-function splitting methods for convex programming, Optim. Methods Softw., 4, 75-83, (1994)
[13] CVX: Matlab software for disciplined convex programming, version 2.0 beta. Available at , September 2013
[14] He, B.; Yuan, X., On the \(##?##\) convergence rate of the Douglas–Rachford alternating direction method, SIAM J. Numer. Anal., 50, 2, 700-709, (2012) · Zbl 1245.90084
[15] Moreau, J. J., Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93, 273-299, (1965) · Zbl 0136.12101
[16] Shefi, R.; Teboulle, M., Rate of convergence analysis of decomposition methods based on the proximal method of multipliers for convex minimization, SIAM J. Optim., 24, 1, 269-297, (2014) · Zbl 1291.90176
[17] Sturm, J. F., Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones, Optim. Methods Softw., 11, 625-653, (1999) · Zbl 0973.90526
[18] Toh, K. C.; Todd, M. J.; Tütüncü, R. H., SDPT3 – a MATLAB software package for semidefinite programming, version 1.3, Optim. Methods Softw., 11, 1-4, 545-581, (1999) · Zbl 0997.90060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.