zbMATH — the first resource for mathematics

Deep learning of vortex-induced vibrations. (English) Zbl 1415.76177
Summary: Vortex-induced vibrations of bluff bodies occur when the vortex shedding frequency is close to the natural frequency of the structure. Of interest is the prediction of the lift and drag forces on the structure given some limited and scattered information on the velocity field. This is an inverse problem that is not straightforward to solve using standard computational fluid dynamics methods, especially since no information is provided for the pressure. An even greater challenge is to infer the lift and drag forces given some dye or smoke visualizations of the flow field. Here we employ deep neural networks that are extended to encode the incompressible Navier-Stokes equations coupled with the structure’s dynamic motion equation. In the first case, given scattered data in space-time on the velocity field and the structure’s motion, we use four coupled deep neural networks to infer very accurately the structural parameters, the entire time-dependent pressure field (with no prior training data), and reconstruct the velocity vector field and the structure’s dynamic motion. In the second case, given scattered data in space-time on a concentration field only, we use five coupled deep neural networks to infer very accurately the vector velocity field and all other quantities of interest as before. This new paradigm of inference in fluid mechanics for coupled multi-physics problems enables velocity and pressure quantification from flow snapshots in small subdomains and can be exploited for flow control applications and also for system identification.

76D17 Viscous vortex flows
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74H45 Vibrations in dynamical problems in solid mechanics
Full Text: DOI
[1] Abadi, M.
[2] Baydin, A. G.; Pearlmutter, B. A.; Radul, A. A.; Siskind, J. M., Automatic differentiation in machine learning: a survey, J. Machine Learning Res., 18, 153, 1-43, (2018) · Zbl 06982909
[3] Beidokhti, R. S.; Malek, A., Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques, J. Franklin Inst., 346, 898-913, (2009) · Zbl 1298.65155
[4] Bourguet, R.; Karniadakis, G. E.; Triantafyllou, M. S., Vortex-induced vibrations of a long flexible cylinder in shear flow, J. Fluid Mech., 677, 342-382, (2011) · Zbl 1241.76137
[5] Chen, T. Q.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D.
[6] Duraisamy, K.; Zhang, Z. J.; Singh, A. P.
[7] Evangelinos, C.; Karniadakis, G. E., Dynamics and flow structures in the turbulent wake of rigid and flexible cylinders subject to vortex-induced vibrations, J. Fluid Mech., 400, 91-124, (1999) · Zbl 0983.76029
[8] Hagge, T.; Stinis, P.; Yeung, E.; Tartakovsky, A. M.
[9] Hirn, M.; Mallat, S.; Poilvert, N., Wavelet scattering regression of quantum chemical energies, Multiscale Model. Simul., 15, 827-863, (2017) · Zbl 1365.42030
[10] Hornik, K.; Stinchcombe, M.; White, H., Multilayer feedforward networks are universal approximators, Neural Networks, 2, 359-366, (1989) · Zbl 1383.92015
[11] Karniadakis, G. E.; Sherwin, S., Spectral/hp Element Methods for Computational Fluid Dynamics, (2005), Oxford University Press · Zbl 1116.76002
[12] Kingma, D. P.; Ba, J.
[13] Kondor, R.
[14] Kondor, R.; Trivedi, S., On the generalization of equivariance and convolution in neural networks to the action of compact groups, Proceedings of the Thirty-fifth International Conference on Machine Learning, Stockholm, Sweden, (2018), ICML
[15] Lagaris, I. E.; Likas, A.; Fotiadis, D. I., Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Networks, 9, 987-1000, (1998)
[16] Ling, J.; Kurzawski, A.; Templeton, J., Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J. Fluid Mech., 807, 155-166, (2016) · Zbl 1383.76175
[17] Ling, J.; Templeton, J., Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty, Phys. Fluids, 27, (2015)
[18] Mallat, S., Understanding deep convolutional networks, Phil. Trans. R. Soc. Lond. A, 374, (2016)
[19] Milano, M.; Koumoutsakos, P., Neural network modeling for near wall turbulent flow, J. Comput. Phys., 182, 1-26, (2002) · Zbl 1090.76535
[20] Newman, D. J.; Karniadakis, G. E., A direct numerical simulation study of flow past a freely vibrating cable, J. Fluid Mech., 344, 95-136, (1997) · Zbl 0901.76062
[21] Owhadi, H., Bayesian numerical homogenization, Multiscale Model. Simul., 13, 812-828, (2015) · Zbl 1322.35002
[22] Owhadi, H.; Scovel, C.; Sullivan, T., Brittleness of Bayesian inference under finite information in a continuous world, Electron. J. Statist., 9, 1-79, (2015) · Zbl 1305.62123
[23] Paidoussis, M. P., Fluid-Structure Interactions: Slender Structures and Axial Flow, 1, (1998), Academic Press
[24] Paidoussis, M. P., Fluid-Structure Interactions: Slender Structures and Axial Flow, 2, (2004), Academic Press
[25] Pang, G.; Yang, L.; Karniadakis, G. E.
[26] Parish, E. J.; Duraisamy, K., A paradigm for data-driven predictive modeling using field inversion and machine learning, J. Comput. Phys., 305, 758-774, (2016) · Zbl 1349.76006
[27] Perdikaris, P.; Raissi, M.; Damianou, A.; Lawrence, N. D.; Karniadakis, G. E., Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling, Proc. R. Soc. Lond. A, 473, (2017) · Zbl 1407.62252
[28] Perdikaris, P.; Venturi, D.; Karniadakis, G. E., Multifidelity information fusion algorithms for high-dimensional systems and massive data sets, SIAM J. Sci. Comput., 38, B521-B538, (2016) · Zbl 1342.62110
[29] Psichogios, D. C.; Ungar, L. H., A hybrid neural network-first principles approach to process modeling, AIChE J., 38, 1499-1511, (1992)
[30] Raghu, M.; Poole, B.; Kleinberg, J.; Ganguli, S.; Sohl-Dickstein, J.
[31] Raissi, M.
[32] Raissi, M.
[33] Raissi, M.
[34] Raissi, M.; Karniadakis, G.
[35] Raissi, M.; Karniadakis, G. E., Hidden physics models: machine learning of nonlinear partial differential equations, J. Comput. Phys., 357, 125-141, (2018) · Zbl 1381.68248
[36] Raissi, M.; Perdikaris, P.; Karniadakis, G. E.
[37] Raissi, M.; Perdikaris, P.; Karniadakis, G. E.
[38] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Inferring solutions of differential equations using noisy multi-fidelity data, J. Comput. Phys., 335, 736-746, (2017) · Zbl 1382.65229
[39] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Machine learning of linear differential equations using Gaussian processes, J. Comput. Phys., 348, 683-693, (2017) · Zbl 1380.68339
[40] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Numerical Gaussian processes for time-dependent and nonlinear partial differential equations, SIAM J. Sci. Comput., 40, A172-A198, (2018) · Zbl 1386.65030
[41] Raissi, M.; Perdikaris, P.; Karniadakis, G. E.
[42] Raissi, M.; Yazdani, A.; Karniadakis, G. E.
[43] Rasmussen, C. E.; Williams, C. K., Gaussian Processes for Machine Learning, 1, (2006), MIT Press · Zbl 1177.68165
[44] Rico-Martinez, R.; Anderson, J.; Kevrekidis, I., Continuous-time nonlinear signal processing: a neural network based approach for gray box identification, Neural Networks for Signal Processing IV. Proceedings of the 1994 IEEE Workshop, 596-605, (1994), IEEE
[45] Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; De Freitas, N., Taking the human out of the loop: a review of Bayesian optimization, Proc. IEEE, 104, 148-175, (2016)
[46] Tripathy, R.; Bilionis, I.
[47] Vlachas, P. R.; Byeon, W.; Wan, Z. Y.; Sapsis, T. P.; Koumoutsakos, P.
[48] Wang, J.-X.; Wu, J.; Ling, J.; Iaccarino, G.; Xiao, H.
[49] Williamson, C. H. K.; Govardhan, R., Vortex-induced vibration, Annu. Rev. Fluid Mech., 36, 413-455, (2004) · Zbl 1125.74323
[50] Zhang, Z. J.; Duraisamy, K.
[51] Zhu, Y.; Zabaras, N.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.