Regularities of semigroups, Carleson measures and the characterizations of BMO-type spaces associated with generalized Schrödinger operators. (English) Zbl 1405.42021

Summary: Let \(\mathcal{L}=-\Delta+\mu\) be the generalized Schrödinger operator on \(\mathbb{R}^{n}\), \(n\geq3\), where \(\Delta\) is the Laplacian and \(\mu\) not \(\equiv0\) is a nonnegative Radon measure on \(\mathbb{R}^{n}\). In this article, we introduce two families of Carleson measures \(\{d\nu_{h,k}\}\) and \(\{d\nu_{P,k}\}\) generated by the heat semigroup \(\{e^{-t\mathcal{L}}\}\) and the Poisson semigroup \(\{e^{-t\sqrt{\mathcal{L}}}\}\), respectively. By the regularities of semigroups, we establish the Carleson measure characterizations of BMO-type spaces \(\text{BMO}_{\mathcal{L}}(\mathbb{R}^{n})\) associated with the generalized Schrödinger operators.


42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B30 \(H^p\)-spaces
35J10 Schrödinger operator, Schrödinger equation
Full Text: DOI Euclid


[1] G. Dafni and J. Xiao, Some new tent spaces and duality theorems for fractional Carleson measures and \(Q_α(\mathbb{R}^n)\), J. Funct. Anal. 208 (2004), no. 2, 377-422. · Zbl 1062.42011
[2] X. Duong and L. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), no. 4, 943-973. · Zbl 1078.42013
[3] X. Duong and L. Yan, New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications, Comm. Pure Appl. Math. 58 (2005), no. 10, 1375-1420. · Zbl 1153.26305
[4] J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea, and J. Zienkiewicz, BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 (2005), no. 2, 329-356. · Zbl 1136.35018
[5] J. Dziubański and J. Zienkiewicz, Hardy space \(H^1\) associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoam. 15 (1999), no. 2, 279-296. · Zbl 0959.47028
[6] C. Fefferman and E. M. Stein, \(H^p\) spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193. · Zbl 0257.46078
[7] J. Huang, P. Li, and Y. Liu, Poisson semigroup, area function, and the characterization of Hardy space associated to degenerate Schrodinger operators, Banach J. Math. Anal. 10 (2016), no. 4, 727-749. · Zbl 1347.42037
[8] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. · Zbl 0102.04302
[9] C. Lin and H. Liu, \( \text{BMO}_L(\mathbb{H}^n)\) spaces and Carleson measures for Schrödinger operators, Adv. Math. 228 (2011), no. 3, 1631-1688. · Zbl 1235.22012
[10] T. Ma, P. R. Stinga, J. L. Torrea, and C. Zhang, Regularity properties of Schrödinger operators, J. Math. Anal. Appl. 388 (2012), no. 2, 817-837. · Zbl 1232.35039
[11] A. C. Ponce and N. Wilmet, Schrödinger operators involving singular potentials and measure data, J. Differential Equations 263 (2017), no. 6, 3581-3610. · Zbl 1384.35018
[12] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. · Zbl 0319.42006
[13] Z. Shen, On fundamental solutions of generalized Schrödinger operators, J. Funct. Anal. 167 (1999), no. 2, 521-564. · Zbl 0936.35051
[14] W. S. Smith, \( \text{BMO}(ρ)\) and Carleson measures, Trans. Amer. Math. Soc. 287 (1985), no. 1, 107-126.
[15] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Ann. of Math. Stud. 63, Princeton Univ. Press, Princeton, 1970. · Zbl 0193.10502
[16] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton Univ. Press, Princeton, 1993. · Zbl 0821.42001
[17] R. S. Strichartz, Traces of BMO-Sobolev spaces, Proc. Amer. Math. Soc. 83 (1981), no. 3, 509-513. · Zbl 0474.46024
[18] J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), no. 3, 511-544. · Zbl 0429.46016
[19] J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, Berlin, 1989. · Zbl 0676.42021
[20] L. Wu and L. Yan, Heat kernels, upper bounds and Hardy spaces associated to the generalized Schrödinger operators, J. Funct. Anal. 270 (2016), no. 10, 3709-3749. · Zbl 1356.42016
[21] D. Yang, D. Yang, and Y. Zhou, Localized BMO and BLO spaces on RD-spaces and applications to Schrödinger operators, Commun. Pure Appl. Anal. 9 (2010), no. 3, 779-812. · Zbl 1188.42008
[22] D. Yang, D. Yang, and Y. Zhou, Localized Morrey-Campanato spaces on metric measure spaces and applications to Schrödinger operators, Nagoya Math. J. 198 (2010), 77-119. · Zbl 1214.46019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.