Buckmaster, Tristan; Vicol, Vlad Nonuniqueness of weak solutions to the Navier-Stokes equation. (English) Zbl 1412.35215 Ann. Math. (2) 189, No. 1, 101-144 (2019). In this very interesting paper are analyzed the weak solutions of the 3D Navier-Stokes equations. The main result is the non uniqueness of weak solutions with bounded kinetic energy. An important part of the introduction is concerning a brief history of the results obtained for the Cauchy-problem for Navier-Stokes equations with initial data of finite kinetic energy, containing also recent results of the authors. The new element of the paper is a convex integration scheme in Sobolev spaces, based on the convex integration framework in Hölder spaces for the Euler equations, introduced in [C. De Lellis and L. Székelyhidi jun., Invent. Math. 193, No. 2, 377–407 (2013; Zbl 1280.35103)]. The main idea is to solve by iterations the Navier-Stokes-Reynolds system where the Reynolds stress is a trace-free symmetric matrix; the velocity is considered as a sum of terms of particular Beltrami waves. A 3D Beltrami vector \(F\) is parallel to its own curl: \( F \times (\nabla \times F)=0\), therefore \(\exists \lambda \in R \) s.t. \( (\nabla \times F) = \lambda F\). If \( \operatorname{div} F=0\), then \( \nabla \times (\nabla \times F)= - \Delta F\). If in addition \(\lambda\) is constant we get \(- \Delta F = \lambda^2 F\). Beltrami flows are solutions of the steady Euler equations describing a 3D steady inviscid and incompressible flows. It is worth noting that Beltrami 3D fields are also linked to two dimensional steady Euler equations. In section 3 is described in detail the construction of a special class of Beltrami wave, called intermittent Beltrami waves. These waves form the building blocks used for the above mentioned convex integration scheme. The second important result of the paper is following: the Hölder continuous dissipative weak solutions of the 3D Euler equations may be obtained as a strong vanishing viscosity limit of a sequence of finite energy weak solutions of the 3D Navier-Stokes equations. Reviewer: Gelu Paşa (Bucureşti) Cited in 6 ReviewsCited in 111 Documents MSC: 35Q30 Navier-Stokes equations 35Q31 Euler equations 35Q35 PDEs in connection with fluid mechanics 76F02 Fundamentals of turbulence 35D30 Weak solutions to PDEs 76D05 Navier-Stokes equations for incompressible viscous fluids Keywords:Navier-Stokes; Euler equations; turbulence; convex integration; intermittency; inviscid limit; weak solutions Citations:Zbl 1280.35103 PDF BibTeX XML Cite \textit{T. Buckmaster} and \textit{V. Vicol}, Ann. Math. (2) 189, No. 1, 101--144 (2019; Zbl 1412.35215) Full Text: DOI arXiv References: [1] Buckmaster, Tristan, Onsager’s conjecture almost everywhere in time, Comm. Math. Phys.. Communications in Mathematical Physics, 333, 1175-1198, (2015) · Zbl 1308.35184 [2] Buckmaster, Tristan; De Lellis, Camillo; Isett, Philip; Sz\'{e}kelyhidi, Jr., L\'{a}szl\'{o}, Anomalous dissipation for {\(1/5}-{H\)}\"{o}lder {E}uler flows, Ann. of Math. (2). Annals of Mathematics. Second Series, 182, 127-172, (2015) · Zbl 1330.35303 [3] Buckmaster, Tristan; De Lellis, Camillo; Sz\'{e}kelyhidi, Jr., L\'{a}szl\'{o}, Dissipative {E}uler flows with {O}nsager-critical spatial regularity, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 69, 1613-1670, (2016) · Zbl 1351.35109 [4] Buckmaster, Tristan; De Lellis, Camillo; Sz\'{e}kelyhidi, Jr., L\'{a}szl\'{o}; Vicol, V., Onsager’s conjecture for admissible weak solutions, (2018) · Zbl 1480.35317 [5] Buckmaster, Tristan; Masmoudi, N.; Vicol, V., unpublished work [6] Buckmaster, Tristan; Shkoller, S.; Vicol, V., Nonuniqueness of weak solutions to the {SQG} equation, (2017) · Zbl 1427.35200 [7] Caffarelli, L.; Kohn, R.; Nirenberg, L., Partial regularity of suitable weak solutions of the {N}avier-{S}tokes equations, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 35, 771-831, (1982) · Zbl 0509.35067 [8] Cheskidov, A.; Constantin, P.; Friedlander, S.; Shvydkoy, R., Energy conservation and {O}nsager’s conjecture for the {E}uler equations, Nonlinearity. Nonlinearity, 21, 1233-1252, (2008) · Zbl 1138.76020 [9] Colombo, Maria; De Lellis, Camillo; De Rosa, Luigi, Ill-posedness of {L}eray solutions for the hypodissipative {N}avier-{S}tokes equations, Comm. Math. Phys.. Communications in Mathematical Physics, 362, 659-688, (2018) · Zbl 1402.35204 [10] Constantin, Peter; E, Weinan; Titi, Edriss S., Onsager’s conjecture on the energy conservation for solutions of {E}uler’s equation, Comm. Math. Phys.. Communications in Mathematical Physics, 165, 207-209, (1994) · Zbl 0818.35085 [11] Constantin, Peter; Fefferman, Charles, Direction of vorticity and the problem of global regularity for the {N}avier-{S}tokes equations, Indiana Univ. Math. J.. Indiana University Mathematics Journal, 42, 775-789, (1993) · Zbl 0837.35113 [12] Constantin, Peter; Foias, Ciprian, Navier-{S}tokes Equations, Chicago Lectures in Math., x+190 pp., (1988) · Zbl 0687.35071 [13] Conti, Sergio; De Lellis, Camillo; Sz\'{e}kelyhidi, Jr., L\'{a}szl\'{o}, {\(h\)}-principle and rigidity for {\(C^{1,\alpha}\)} isometric embeddings. Nonlinear Partial Differential Equations, Abel Symp., 7, 83-116, (2012) · Zbl 1255.53038 [14] Daneri, Sara; Sz\'{e}kelyhidi, Jr., L\'{a}szl\'{o}, Non-uniqueness and \(h\)-principle for {H}\"{o}lder-continuous weak solutions of the {E}uler equations, Arch. Ration. Mech. Anal.. Archive for Rational Mechanics and Analysis, 224, 471-514, (2017) · Zbl 1372.35221 [15] De Lellis, Camillo; Sz\'{e}kelyhidi, Jr., L\'{a}szl\'{o}, The {E}uler equations as a differential inclusion, Ann. of Math. (2). Annals of Mathematics. Second Series, 170, 1417-1436, (2009) · Zbl 1350.35146 [16] De Lellis, Camillo; Sz\'{e}kelyhidi, Jr., L\'{a}szl\'{o}, Dissipative continuous {E}uler flows, Invent. Math.. Inventiones Mathematicae, 193, 377-407, (2013) · Zbl 1280.35103 [17] De Lellis, Camillo; Sz\'{e}kelyhidi, Jr., L\'{a}szl\'{o}, On {\(h\)}-principle and {O}nsager’s conjecture, Eur. Math. Soc. Newsl.. European Mathematical Society. Newsletter. http://www.ems-ph.org/journals/newsletter/pdf/2015-03-95.pdf, 19-24, (2015) · Zbl 1335.35189 [18] Eyink, Gregory L., Energy dissipation without viscosity in ideal hydrodynamics. {I}. {F}ourier analysis and local energy transfer, Phys. D. Physica D. Nonlinear Phenomena, 78, 222-240, (1994) · Zbl 0817.76011 [19] Fabes, E. B.; Jones, B. F.; Rivi\`ere, N. M., The initial value problem for the {N}avier-{S}tokes equations with data in {\(L\sp{p} \)}, Arch. Rational Mech. Anal.. Archive for Rational Mechanics and Analysis, 45, 222-240, (1972) · Zbl 0254.35097 [20] Frisch, Uriel, Turbulence. The Legacy of A. N. Kolmogorov, xiv+296 pp., (1995) · Zbl 0832.76001 [21] Furioli, Giulia; Lemari\'{e}-Rieusset, Pierre G.; Terraneo, Elide, Unicit\'{e} dans {\(L^3(\Bbb R^3)\)} et d’autres espaces fonctionnels limites pour {N}avier-{S}tokes, Rev. Mat. Iberoamericana. Revista Matem\'{a}tica Iberoamericana, 16, 605-667, (2000) · Zbl 0970.35101 [22] Grafakos, Loukas, Classical {F}ourier Analysis, Grad. Texts in Math., 249, xvi+489 pp., (2008) · Zbl 1220.42001 [23] Guillod, J.; {\v{S}}ver{{\'a}}k, V., Numerical investigations of non-uniqueness for the {N}avier-{S}tokes initial value problem in borderline spaces, (2017) [24] Hopf, Eberhard, \`“{U}ber die {A}nfangswertaufgabe f\'”{u}r die hydrodynamischen {G}rundgleichungen, Math. Nachr.. Mathematische Nachrichten, 4, 213-231, (1951) · Zbl 0042.10604 [25] Isett, P., A proof of {O}nsager’s conjecture, Ann. of Math., 188, 871-963, (2018) · Zbl 1416.35194 [26] Isett, P., On the endpoint regularity in {O}nsager’s conjecture, (2017) [27] Iskauriaza, L.; Ser\"{e}gin, G. A.; Shverak, V., {\(L_{3,\infty}\)}-solutions of {N}avier-{S}tokes equations and backward uniqueness, Uspekhi Mat. Nauk. Rossi\u{\i}skaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk, 58, 3-44, (2003) · Zbl 1064.35134 [28] Jia, Hao; \v{S}ver\'{a}k, Vladim\'{i}r, Local-in-space estimates near initial time for weak solutions of the {N}avier-{S}tokes equations and forward self-similar solutions, Invent. Math.. Inventiones Mathematicae, 196, 233-265, (2014) · Zbl 1301.35089 [29] Jia, Hao; \v{S}ver\'{a}k, Vladim\'{i}r, Are the incompressible 3d {N}avier-{S}tokes equations locally ill-posed in the natural energy space?, J. Funct. Anal.. Journal of Functional Analysis, 268, 3734-3766, (2015) · Zbl 1317.35176 [30] Kato, Tosio, Strong {\(L\sp{p} \)}-solutions of the {N}avier-{S}tokes equation in {\({\bf R}\sp{m} \)}, with applications to weak solutions, Math. Z.. Mathematische Zeitschrift, 187, 471-480, (1984) · Zbl 0545.35073 [31] Kiselev, A. A.; Lady\v{z}enskaya, O. A., On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid, Izv. Akad. Nauk SSSR. Ser. Mat.. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 21, 655-680, (1957) [32] Koch, Herbert; Tataru, Daniel, Well-posedness for the {N}avier-{S}tokes equations, Adv. Math.. Advances in Mathematics, 157, 22-35, (2001) · Zbl 0972.35084 [33] Kukavica, Igor, Pressure integrability conditions for uniqueness of mild solutions of the {N}avier-{S}tokes system, J. Differential Equations. Journal of Differential Equations, 223, 427-441, (2006) · Zbl 1105.35080 [34] Kukavica, Igor, Role of the pressure for validity of the energy equality for solutions of the {N}avier-{S}tokes equation, J. Dynam. Differential Equations. Journal of Dynamics and Differential Equations, 18, 461-482, (2006) · Zbl 1105.35081 [35] Kukavica, Igor, On partial regularity for the {N}avier-{S}tokes equations, Discrete Contin. Dyn. Syst.. Discrete and Continuous Dynamical Systems. Series A, 21, 717-728, (2008) · Zbl 1147.35071 [36] Lady\v{z}enskaja, O. A., Uniqueness and smoothness of generalized solutions of {N}avier-{S}tokes equations, Zap. Nau\v{c}n. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI). Zapiski Nau\v{c}nyh Seminarov Leningradskogo Otdelenija Matemati\v{c}eskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI), 5, 169-185, (1967) · Zbl 0194.12805 [37] Lady\v{z}enskaja, O. A.; Seregin, G. A., On partial regularity of suitable weak solutions to the three-dimensional {N}avier-{S}tokes equations, J. Math. Fluid Mech.. Journal of Mathematical Fluid Mechanics, 1, 356-387, (1999) · Zbl 0954.35129 [38] Lemari\'{e}-Rieusset, P. G., Recent Developments in the {N}avier-{S}tokes Problem, Chapman & Hall/CRC Research Notes in Math., 431, xiv+395 pp., (2002) · Zbl 1034.35093 [39] Lemari\'{e}-Rieusset, Pierre Gilles, The {N}avier-{S}tokes Problem in the 21st Century, xxii+718 pp., (2016) · Zbl 1342.76029 [40] Leray, Jean, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math.. Acta Mathematica, 63, 193-248, (1934) · JFM 60.0726.05 [41] Lin, Fanghua, A new proof of the {C}affarelli-{K}ohn-{N}irenberg theorem, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 51, 241-257, (1998) · Zbl 0909.35109 [42] Lions, P.-L.; Masmoudi, N., Uniqueness of mild solutions of the {N}avier-{S}tokes system in {\(L^N\)}, Comm. Partial Differential Equations. Communications in Partial Differential Equations, 26, 2211-2226, (2001) · Zbl 1086.35077 [43] Prodi, Giovanni, Un teorema di unicit\`a per le equazioni di {N}avier-{S}tokes, Ann. Mat. Pura Appl. (4). Annali di Matematica Pura ed Applicata. Serie Quarta, 48, 173-182, (1959) · Zbl 0148.08202 [44] Robinson, James C.; Rodrigo, Jos\'{e} L.; Sadowski, Witold, The Three-Dimensional {N}avier-{S}tokes Equations, Cambridge Stud. Adv. Math., 157, xiv+471 pp., (2016) · Zbl 1358.35002 [45] Scheffer, Vladimir, Partial regularity of solutions to the {N}avier-{S}tokes equations, Pacific J. Math.. Pacific Journal of Mathematics, 66, 535-552, (1976) · Zbl 0325.35064 [46] Scheffer, Vladimir, An inviscid flow with compact support in space-time, J. Geom. Anal.. The Journal of Geometric Analysis, 3, 343-401, (1993) · Zbl 0836.76017 [47] Seregin, G.; \v{S}ver\'{a}k, V., Navier-{S}tokes equations with lower bounds on the pressure, Arch. Ration. Mech. Anal.. Archive for Rational Mechanics and Analysis, 163, 65-86, (2002) · Zbl 1002.35094 [48] Serrin, James, On the interior regularity of weak solutions of the {N}avier-{S}tokes equations, Arch. Rational Mech. Anal.. Archive for Rational Mechanics and Analysis, 9, 187-195, (1962) · Zbl 0106.18302 [49] Serrin, James, The initial value problem for the {N}avier-{S}tokes equations. Nonlinear {P}roblems, 69-98, (1963) · Zbl 0115.08502 [50] Shinbrot, Marvin, The energy equation for the {N}avier-{S}tokes system, SIAM J. Math. Anal.. SIAM Journal on Mathematical Analysis, 5, 948-954, (1974) · Zbl 0316.76011 [51] Shnirelman, A., On the nonuniqueness of weak solution of the {E}uler equation, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 50, 1261-1286, (1997) · Zbl 0909.35109 [52] Temam, Roger, Navier-{S}tokes Equations. Theory and Numerical Analysis, reprint of the 1984 edition, xiv+408 pp., (2001) · Zbl 0981.35001 [53] Vasseur, Alexis F., A new proof of partial regularity of solutions to {N}avier-{S}tokes equations, NoDEA Nonlinear Differential Equations Appl.. NoDEA. Nonlinear Differential Equations and Applications, 14, 753-785, (2007) · Zbl 1142.35066 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.