×

Generalised additive dependency inflated models including aggregated covariates. (English) Zbl 1416.62218

The “Generalised Additive Dependency Inflated Model including Aggregated Covariance” (GADIMAC) model has the form \[ U = G(m_0 + m_1(X) + m_2(\lambda(X)Y) + m_3(X+Y)) + \epsilon, \] where \(X, Y, U\) are observable, \(G\) is a known invertible link function, \(m_0\) is an unknown constant, and \(m_1, m_2, m_3, \lambda\) are unknown functions. The paper under review presents results on the rate of a penalized least squares estimator of \((m_0, m_1, m_2, m_3, \lambda)\) and on the identification of those functions. Furthermore, an age-period-cohort density version of GADIMAC is applied to forecast future asbestos-related deaths in the UK.

MSC:

62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
62P10 Applications of statistics to biology and medical sciences; meta analysis
62M20 Inference from stochastic processes and prediction

References:

[1] Agmon, S. (1965)., Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton, NJ. · Zbl 0142.37401
[2] Beutner, E. A., Reese, S. B. and Urbain, J. P. (2017). Identifiability issues of age-period and age-period-cohort models of the Lee-Carter type., Insurance: Mathematics and Economics75, 117-125. · Zbl 1394.91188 · doi:10.1016/j.insmatheco.2017.04.006
[3] Birman, M. Š., Solomjak, M. J. (1967). Piecewise polynomial approximations of functions of classes \(W_p^α\) (Russian)., Mat. Sb. (N.S.)73, 331-355. · Zbl 0173.16001
[4] Cairns, A. J. G., Blake, D., Dowdb, K., Coughlan, G. D. and Epstein, D. (2011). Mortality density forecasts: An analysis of six stochastic mortality models., Insurance: Mathematics and Economics48, 355-367.
[5] Hiabu, M., Mammen, E., Martinez-Miranda, M. D. and Nielsen, J. P. (2016). In-sample forecasting with local linear survival densities., Biometrika103, 843-859. · Zbl 1506.62384 · doi:10.1093/biomet/asw038
[6] Hodgson, J. T., McElvenny, D. M. and Darnton, A. J. (2005). The expected burden of mesothelioma mortality in Great Britain from 2002 to 2050., British Journal of Cancer92, 587-593.
[7] Horowitz, J. L. and Mammen, E. (2007). Rate-optimal estimation for a general class of nonparametric regression models with unknown link function., Annals of Statistics35, 2589-2619. · Zbl 1129.62034 · doi:10.1214/009053607000000415
[8] Kuang, D., Nielsen, B. and Nielsen, J. P. (2008a). Identification of the age-period-cohort model and the extended chain-ladder model., Biometrika95, 979-986. · Zbl 1437.62515 · doi:10.1093/biomet/asn026
[9] Kuang, D., Nielsen, B. and Nielsen, J. P. (2008b). Forecasting with the age-period-cohort model and the extended chain-ladder model., Biometrika95, 987-991. · Zbl 1437.62516 · doi:10.1093/biomet/asn038
[10] Kuang, D., Nielsen, B. and Nielsen, J. P. (2011). Forecasting in an extended chain-ladder-type model., Journal of Risk and Insurance78, 345-359.
[11] Lee, R. D. and Carter, L. R. (1992). Modeling and forecasting US mortality., Journal of American Statistical Association87, 659-675 · Zbl 1351.62186
[12] Lee, R. D. and Miller, T. (2001). Evaluating the performance of the Lee-Carter method for forecasting mortality., Demography38, 537-549
[13] Lee, Y. K., Mammen, E., Nielsen, J. P. and Park, B. U. ((2015). Asymptotics for In-Sample Density Forecasting., Annals of Statistics43, 620-651. · Zbl 1312.62050 · doi:10.1214/14-AOS1288
[14] Lee, Y. K., Mammen, E., Nielsen, J. P. and Park, B. U. (2017). Operational time and in-sample density forecasting., Annals of Statistics45, 1312-1341. · Zbl 1371.62031 · doi:10.1214/16-AOS1486
[15] Mammen, E. and Nielsen, J. P. (2003). Generalised structured models., Biometrika90, 551-566. · Zbl 1436.62313 · doi:10.1093/biomet/90.3.551
[16] Mammen, E., and van de Geer, S. (1997). Penalized quasi-likelihood estimation in partial linear models., Annals of Statistics25, 1014-1035. · Zbl 0906.62033 · doi:10.1214/aos/1069362736
[17] Martinez-Miranda, M. D., Nielsen, B. and Nielsen, J. P. (2015). Inference and forecasting in the age-period-cohort model with unknown exposure with an application to mesothelioma mortality., Journal of Royal Statistical Society Series A178, 29-55.
[18] Martinez-Miranda, M. D., Nielsen, B. and Nielsen, J. P. (2016). Simple benchmark for mesothelioma projection for Great Britain., Occupational and Environmental Medicine73, 561-563.
[19] Nielsen, B. and Nielsen, J. P. (2014). Identification and forecasting in mortality models., The Scientific World Journal, 347043. · Zbl 1328.62575
[20] O-Brien, R. (2014)., Age-Period-Cohort Models: Approaches and Analyses with Aggregate Data. Chapman & Hall/CRC Press, London.
[21] Peto, J., Hodgson, J. T. and Matthews, F. E. (1995). Continuing increase in mesothelioma mortality in Britain., Lancet345, 535-539.
[22] Rake, C., Gilham, C. and Hatch, J. (2009). Occupational, domestic and environmental mesothelioma risks in the British population: a case-control study., British Journal of Cancer100, 1175-1183.
[23] Renshaw, A. J. and Haberman, S. (2006). A cohort-based extension to the Lee-Carter model for mortality reduction factors., Insurance: Mathematics and Economics38, 556-570. · Zbl 1168.91418 · doi:10.1016/j.insmatheco.2005.12.001
[24] Riebler, A., Held, L. and Rue, H. (2012). Estimation and extrapolation of time trends in registry data-Borrowing strength from related populations., Annals of Applied Statistics6, 304-333. · Zbl 1235.62030 · doi:10.1214/11-AOAS498
[25] Smith, T. R. and Wakefield, J. (2016). A review and comparison of age-period-cohort models for cancer incidence., Statistical Science31, 591-610. · Zbl 1437.92041 · doi:10.1214/16-STS580
[26] Tan, E., Warren, N. and Darnton, A. J. (2010). Projection of mesothelioma mortality in Britain using Bayesian methods., British Journal of Cancer103, 430-436.
[27] Tan, E., Warren, N., Darnton, A. J. (2011). Modelling mesothelioma mortality in Great Britain using the two-stage clonal expansion model., Occupational and Environmental Medicine68, A60. doi:10.1136/oemed-2011-100382.194
[28] van de Geer, S. · Zbl 1179.62073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.