×

zbMATH — the first resource for mathematics

Stabilized weighted reduced basis methods for parametrized advection dominated problems with random inputs. (English) Zbl 1408.35021

MSC:
35J15 Second-order elliptic equations
65C30 Numerical solutions to stochastic differential and integral equations
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
Software:
RBniCS; FEniCS
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] I. Akhtar, A. H. Nayfeh, and C. J. Ribbens, On the stability and extension of reduced-order Galerkin models in incompressible flows, Theoret. Comput. Fluid Dynam., 23 (2009), pp. 213–237. · Zbl 1234.76040
[2] S. Ali, F. Ballarin, and G. Rozza, Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations, submitted.
[3] J. Baiges, R. Codina, and S. Idelsohn, Explicit reduced-order models for the stabilized finite element approximation of the incompressible Navier–Stokes equations, Internat. J. Numer. Methods Fluids, 72 (2013), pp. 1219–1243. · Zbl 1286.76028
[4] F. Ballarin, E. Faggiano, S. Ippolito, A. Manzoni, A. Quarteroni, G. Rozza, and R. Scrofani, Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD–Galerkin method and a vascular shape parametrization, J. Comput. Phys., 315 (2016), pp. 609–628. · Zbl 1349.76173
[5] F. Ballarin, A. Sartori, and G. Rozza, RBniCS—Reduced Order Modelling in FEniCS, , 2015.
[6] M. Barrault, Y. Maday, N. Nguyen, and A. Patera, An ‘empirical interpolation’ method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 667–672. · Zbl 1061.65118
[7] A. Brooks and T. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32 (1982), pp. 199–259. · Zbl 0497.76041
[8] T. Chacón Rebollo, E. Delgado Ávila, M. Gómez Mármol, F. Ballarin, and G. Rozza, On a certified Smagorinsky reduced basis turbulence model, SIAM J. Numer. Anal., 55 (2017), pp. 3047–3067, . · Zbl 1380.65339
[9] P. Chen, Model Order Reduction Techniques for Uncertainty Quantification Problems, Ph.D. thesis, École Polytechnique Fédérale de Lausanne EPFL, , 2014.
[10] P. Chen, A. Quarteroni, and G. Rozza, A weighted reduced basis method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 51 (2013), pp. 3163–3185, . · Zbl 1288.65007
[11] P. Chen, A. Quarteroni, and G. Rozza, A weighted empirical interpolation method: A priori convergence analysis and applications, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 943–953. · Zbl 1304.65097
[12] P. Chen, A. Quarteroni, and G. Rozza, Reduced basis methods for uncertainty quantification, SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 813–869, . · Zbl 1400.65010
[13] L. Dedè, Reduced basis method for parametrized elliptic advection-reaction problems, J. Comput. Math., 28 (2010), pp. 122–148.
[14] R. Durrett, Probability Theory and Examples, Cambridge University Press, Cambridge, UK, 2010. · Zbl 1202.60001
[15] J. Eftang, M. Grepl, and A. Patera, A posteriori error bounds for the empirical interpolation method, C. R. Math. Acad. Sci. Paris, 348 (2010), pp. 575–579. · Zbl 1190.65018
[16] F. Gelsomino and G. Rozza, Comparison and combination of reduced-order modelling techniques in 3D parametrized heat transfer problems, Math. Comput. Model. Dyn. Syst., 17 (2011), pp. 371–394. · Zbl 1302.80014
[17] S. Giere, T. Iliescu, V. John, and D. Wells, SUPG reduced order models for convection-dominated convection–diffusion–reaction equations, Comput. Methods Appl. Mech. Engrg., 289 (2015), pp. 454–474.
[18] M. Grepl and A. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, ESAIM M2AN, 39 (2005), pp. 157–181. · Zbl 1079.65096
[19] B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations, ESAIM M2AN, 42 (2008), pp. 277–302. · Zbl 1388.76177
[20] J. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Springer, Berlin, 2016. · Zbl 1329.65203
[21] T. Hughes and A. Brooks, A multidimensional upwind scheme with no crosswind diffusion, in Finite Element Methods for Convection Dominated Flows, AMD 34, American Society of Mechanical Engineers (ASME), New York, 1979, pp. 19–35.
[22] D. Huynh, G. Rozza, S. Sen, and A. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants, C. R. Math. Acad. Sci. Paris, 345 (2007), pp. 473–478. · Zbl 1127.65086
[23] T. Iliescu, H. Liu, and X. Xie, Regularized Reduced Order Models for a Stochastic Burgers Equation, preprint, , 2017. · Zbl 1397.35349
[24] T. Iliescu and Z. Wang, Variational multiscale proper orthogonal decomposition: Navier-Stokes equations, Numer. Methods Partial Differential Equations, 30 (2014), pp. 641–663. · Zbl 1452.76048
[25] F. Incropera and D. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, 1990.
[26] V. John and J. Novo, Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations, SIAM J. Numer. Anal., 49 (2011), pp. 1149–1176, . · Zbl 1233.65065
[27] C. Johnson and U. Nävert, An analysis of some finite element methods for advection-diffusion problems, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis (Proc. Conf., Univ. Nijmegen, Nijmegen, 1980), North-Holland Math. Stud. 47, North-Holland, Amsterdam, 1981, pp. 99–116.
[28] C. Johnson, U. Nävert, and J. Pitkäranta, Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 45 (1984), pp. 285–312.
[29] T. Lassila and G. Rozza, Parametric free-form shape design with PDE models and reduced basis method, Comput. Methods Appl. Mech. Engrg., 199 (2010), pp. 1583–1592. · Zbl 1231.76245
[30] A. Logg, K. Mardal, and G. Wells, Automated Solution of Differential Equations by the Finite Element Method, Springer-Verlag, Berlin, 2012. · Zbl 1247.65105
[31] S. Lorenzi, A. Cammi, L. Luzzi, and G. Rozza, POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations, Comput. Methods Appl. Mech. Engrg., 311 (2016), pp. 151–179.
[32] Y. Maday, A. Manzoni, and A. Quarteroni, An online intrinsic stabilization strategy for the reduced basis approximation of parametrized advection-dominated problems, C. R. Math. Acad. Sci. Paris, 354 (2016), pp. 1188–1194. · Zbl 1353.65093
[33] A. Manzoni, A. Quarteroni, and G. Rozza, Model reduction techniques for fast blood flow simulation in parametrized geometries, Int. J. Numer. Methods Biomed. Engrg., 28 (2012), pp. 604–625.
[34] N. C. Nguyen, G. Rozza, D. B. P. Huynh, and A. T. Patera, Reduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs: Application to real-time Bayesian parameter estimation, in Large-Scale Inverse Problems and Quantification of Uncertainty, Wiley, Chichester, 2011, pp. 151–177.
[35] N.-C. Nguyen, G. Rozza, and A. T. Patera, Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation, Calcolo, 46 (2009), pp. 157–185. · Zbl 1178.65109
[36] P. Pacciarini, Stabilized Reduced Basis Method for Parametrized Advection-Diffusion PDEs, Master’s thesis, Università degli Studi di Pavia, Pavia, Italy, 2012.
[37] P. Pacciarini and G. Rozza, Stabilized reduced basis method for parametrized advection–diffusion PDEs, Comput. Methods Appl. Mech. Engrg., 274 (2014), pp. 1–18. · Zbl 1296.65165
[38] P. Pacciarini and G. Rozza, Stabilized reduced basis method for parametrized scalar advection-diffusion problems at higher Péclet number: Roles of the boundary layers and inner fronts, in Proceedings of the 11th World Congress on Computational Mechanics and 5th European Congress on Computational Mechanics and 6th European Congress on Computational Fluid Dynamics, Barcelona, Spain, 2014, pp. 5614–5624.
[39] P. Pacciarini and G. Rozza, Reduced basis approximation of parametrized advection-diffusion PDEs with high Péclet number, in Numerical Mathematics and Advanced Applications - ENUMATH 2013, Lecture Notes Comput. Sci. Eng. 103, Springer, Cham, 2015, pp. 419–426. · Zbl 1320.65180
[40] A. Quarteroni, G. Rozza, and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations and applications, J. Math. Ind., 1 (2011), 3. · Zbl 1273.65148
[41] A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics, Texts Appl. Math. 37, Springer-Verlag, Berlin, 2007. · Zbl 1136.65001
[42] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer, Berlin, 1994. · Zbl 0803.65088
[43] G. Rozza, D. Huynh, and A. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics, Arch. Comput. Methods Eng., 3 (2008), pp. 229–275. · Zbl 1304.65251
[44] G. Rozza, C. N. Nguyen, A. T. Patera, and S. Deparis, Reduced basis methods and a posteriori error estimators for heat transfer problems, in Proceedings of the ASME 2009 Heat Transfer Summer Conference Collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer, San Francisco, CA, 2009, pp. 753–762.
[45] C. Spannring, Weighted Reduced Basis Methods for Parabolic PDEs with Random Input Data, Ph.D. thesis, Graduate School CE, Technische Universität Darmstadt, Darmstadt, Germany, 2018.
[46] C. Spannring, S. Ullmann, and J. Lang, A weighted reduced basis method for parabolic PDEs with random data, in Recent Advances in Computational Engineering (ICCE 2017), Lecture Notes in Comput. Sci. Eng. 124, M. Schäfer et al., eds., Springer, Cham, pp. 145–161, .
[47] G. Stabile, S. Hijazi, A. Mola, S. Lorenzi, and G. Rozza, POD-Galerkin reduced order methods for CFD using finite volume discretisation: Vortex shedding around a circular cylinder, Commun. Appl. Ind. Math., 8 (2017), pp. 210–236. · Zbl 1383.35175
[48] L. Venturi, Weighted Reduced Basis Methods for Parametrized PDEs in Uncertainty Quantification Problems, Master’s thesis, Università degli Studi di Trieste/SISSA, Trieste, Italy, 2016.
[49] L. Venturi, F. Ballarin, and G. Rozza, A weighted POD method for elliptic PDEs with random inputs, J. Sci. Comput., to appear, .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.