×

Scaled Gaussian stochastic process for computer model calibration and prediction. (English) Zbl 1409.62185


MSC:

62M30 Inference from spatial processes
62F15 Bayesian inference
62P30 Applications of statistics in engineering and industry; control charts
60G15 Gaussian processes
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] K. R. Anderson and M. P. Poland, Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: K\=\ilauea Volcano, 2000–2012, Earth Planetary Sci. Lett., 447 (2016), pp. 161–171.
[2] K. R. Anderson and M. P. Poland, Abundant carbon in the mantle beneath Hawaii, Nature Geosci., 10 (2017), pp. 704–708.
[3] P. D. Arendt, D. W. Apley, and W. Chen, Quantification of model uncertainty: Calibration, model discrepancy, and identifiability, J. Mech. Design, 134 (2012), 100908.
[4] P. D. Arendt, D. W. Apley, W. Chen, D. Lamb, and D. Gorsich, Improving identifiability in model calibration using multiple responses, J. Mech. Design, 134 (2012), 100909.
[5] M. J. Bayarri, J. O. Berger, E. S. Calder, K. Dalbey, S. Lunagomez, A. K. Patra, E. B. Pitman, E. T. Spiller, and R. L. Wolpert, Using statistical and computer models to quantify volcanic hazards, Technometrics, 51 (2009), pp. 402–413.
[6] M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, C.-H. Lin, and J. Tu, A framework for validation of computer models, Technometrics, 49 (2007), pp. 138–154.
[7] J. O. Berger, V. De Oliveira, and B. Sansó, Objective Bayesian analysis of spatially correlated data, J. Amer. Statist. Assoc., 96 (2001), pp. 1361–1374. · Zbl 1051.62095
[8] V. De Oliveira, Objective Bayesian analysis of spatial data with measurement error, Canad. J. Statist., 35 (2007), pp. 283–301. · Zbl 1129.62086
[9] A. Forrester, A. Sobester, and A. Keane, Engineering Design via Surrogate Modelling: A Practical Guide, John Wiley & Sons, 2008.
[10] M. Gu, Jointly Robust Prior for Gaussian Stochastic Process in Emulation, Calibration and Variable Selection, preprint, , 2018.
[11] M. Gu, RobustCalibration: Robust Calibration of Imperfect Mathematical Models, R package, version 0.5.0, , 2018.
[12] M. Gu and J. O. Berger, Parallel partial Gaussian process emulation for computer models with massive output, Ann. Appl. Stat., 10 (2016), pp. 1317–1347. · Zbl 1391.62184
[13] M. Gu, J. Palomo, and J. O. Berger, RobustGaSP: Robust Gaussian Stochastic Process Emulation in R, preprint, , 2018.
[14] M. Gu, X. Wang, and J. O. Berger, Robust Gaussian stochastic process emulation, Ann. Statist., 46 (2018), pp. 3038–3066. · Zbl 1408.62155
[15] M. Gu, F. Xie, and L. Wang, A Theoretical Framework of the Scaled Gaussian Stochastic Process in Prediction and Calibration, preprint, , 2018.
[16] D. Higdon, J. Gattiker, B. Williams, and M. Rightley, Computer model calibration using high-dimensional output, J. Amer. Statist. Assoc., 103 (2008), pp. 570–583. · Zbl 1469.62414
[17] M. C. Kennedy and A. O’Hagan, Bayesian calibration of computer models, J. R. Stat. Soc. Ser. B Stat. Methodol., 63 (2001), pp. 425–464. · Zbl 1007.62021
[18] F. Liu, M. Bayarri, and J. Berger, Modularization in Bayesian analysis, with emphasis on analysis of computer models, Bayesian Anal., 4 (2009), pp. 119–150. · Zbl 1330.65033
[19] D. Lopes, Development and Implementation of Bayesian Computer Model Emulators, Ph.D. thesis, Duke University, 2011.
[20] D. Massonnet and K. L. Feigl, Radar interferometry and its application to changes in the earth’s surface, Rev. Geophys., 36 (1998), pp. 441–500.
[21] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comp., 35 (1980), pp. 773–782. · Zbl 0464.65037
[22] J. Oakley, Bayesian Uncertainty Analysis for Complex Computer Codes, Ph.D. thesis, University of Sheffield, 1999.
[23] J. S. Park, Tuning Complex Computer Codes to Data and Optimal Designs, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1991.
[24] R. Paulo, Default priors for Gaussian processes, Ann. Statist., (2005), pp. 556–582. · Zbl 1069.62030
[25] M. Plumlee, Bayesian calibration of inexact computer models, J. Amer. Statist. Assoc., 112 (2017), pp. 1274–1285.
[26] P. Z. Qian and C. J. Wu, Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments, Technometrics, 50 (2008), pp. 192–204.
[27] O. Roustant, D. Ginsbourger, and Y. Deville, DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization, J. Statist. Software, 51 (2012), pp. 1–55.
[28] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer experiments, Statist. Sci., 4 (1989), pp. 409–423. · Zbl 0955.62619
[29] T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer Experiments, Springer Science & Business Media, 2013. · Zbl 1041.62068
[30] M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, Springer Science & Business Media, 2012.
[31] R. Tuo and C. F. J. Wu, A theoretical framework for calibration in computer models: Parametrization, estimation and convergence properties, SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 767–795, . · Zbl 1383.62354
[32] R. Tuo and C. F. J. Wu, Efficient calibration for imperfect computer models, Ann. Statist., 43 (2015), pp. 2331–2352. · Zbl 1326.62228
[33] R. K. Wong, C. B. Storlie, and T. Lee, A frequentist approach to computer model calibration, J. R. Stat. Soc. Ser. B. Stat. Methodol., 79 (2017), pp. 635–648.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.