×

An efficient distribution method for nonlinear two-phase flow in highly heterogeneous multidimensional stochastic porous media. (English) Zbl 1405.76054

Summary: In the context of stochastic two-phase flow in porous media, we introduce a novel and efficient method to estimate the probability distribution of the wetting saturation field under uncertain rock properties in highly heterogeneous porous systems, where streamline patterns are dominated by permeability heterogeneity, and for slow displacement processes (viscosity ratio close to unity). Our method, referred to as the frozen streamline distribution method (FROST), is based on a physical understanding of the stochastic problem. Indeed, we identify key random fields that guide the wetting saturation variability, namely fluid particle times of flight and injection times. By comparing saturation statistics against full-physics Monte Carlo simulations, we illustrate how this simple, yet accurate FROST method performs under the preliminary approximation of frozen streamlines. Further, we inspect the performance of an accelerated FROST variant that relies on a simplification about injection time statistics. Finally, we introduce how quantiles of saturation can be efficiently computed within the FROST framework, hence leading to robust uncertainty assessment.

MSC:

76S05 Flows in porous media; filtration; seepage
76M35 Stochastic analysis applied to problems in fluid mechanics
76T10 Liquid-gas two-phase flows, bubbly flows

Software:

GSLIB
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abgrall, R.: A simple, flexible and generic deterministic approach to uncertainty quantifications in non linear problems: application to fluid flow problems. Rapport de recherche. INRIA (2007)
[2] Aziz, K., Settari, A.: Petroleum Reservoir Simulation, vol. 476. Applied Science Publishers, England (1979)
[3] Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005-1034 (2007) · Zbl 1151.65008 · doi:10.1137/050645142
[4] Bäck, J., Nobile, F., Tamellini, L., Tempone, R.: Stochastic spectral galerkin and collocation methods for pdes with random coefficients: a numerical comparison. Spectral High Order Methods Partial Diff Equa. 76, 43-62 (2011) · Zbl 1216.65004 · doi:10.1007/978-3-642-15337-2_3
[5] Ballio, F., Guadagnini, A.: Convergence assessment of numerical monte carlo simulations in groundwater hydrology. Water Resour. Res., 40(4) (2004)
[6] Batycky, R.P.: A Three-Dimensional Two-Phase Field Scale Streamline Simulator. Phd thesis, Stanford University. Doctoral dissertation (1997)
[7] Botev, Z.I., Grotowski, J.F., Kroese, D.P.: Kernel density estimation via diffusion. Ann. Stat. 38, 2916-2957 (2010) · Zbl 1200.62029 · doi:10.1214/10-AOS799
[8] Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacement in sands. Trans. AIME 146(1), 107-116 (1942) · doi:10.2118/942107-G
[9] Charrier, J.: Strong and weak error estimates for elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50, 216-246 (2012) · Zbl 1241.65011 · doi:10.1137/100800531
[10] Chen, Y., Oliver, D.S., Zhang, D.: Data assimilation for nonlinear problems by ensemble Kalman filter with reparameterization. J. Pet. Sci. Eng. 66, 1-14 (2009) · doi:10.1016/j.petrol.2008.12.002
[11] Cline, D.B.H., Hart, J.D.: Kernel estimation of densities with discontinuities or discontinuous derivatives. Statistics 22, 69-84 (1991) · Zbl 0729.62031 · doi:10.1080/02331889108802286
[12] Cvetkovic, V., Dagan, G.: Transport of kinetically sorbing solute by steady random velocity in heterogeneous porous formations. J. Fluid Mech. 265, 189-215 (1994) · Zbl 0819.76091
[13] Dagan, G.: Flow and Transport in Porous Formations. Springer-Verlag, Berlin (1989) · doi:10.1007/978-3-642-75015-1
[14] Dagan, G., Neuman, S.: Subsurface Flow and Transport: A Stochastic Approach. Cambridge University Press, Cambridge (1997) · doi:10.1017/CBO9780511600081
[15] Deutsch, C.V.: Geostatistical Reservoir Modeling. Oxford University Press, Oxford (2002)
[16] Deutsch, C.V., Journel, A.G.: GSLIB: Geostatistical Software Library and User’s Guide. Oxford University Press, Oxford (1998)
[17] Foo, J., Wan, X., Karniadakis, G.: The multi-element probabilistic collocation method: Error analysis and simulation. J. Comput. Phys. 227, 9572-9595 (2008) · Zbl 1153.65008 · doi:10.1016/j.jcp.2008.07.009
[18] Gelhar, L.W.: Stochastic Subsurface Hydrology. Prentice-Hall, Upper Saddle River (1986)
[19] Gu, Y., Oliver, D.S.: The ensemble Kalman filter for continuous updating of reservoir simulation models. J. Energy Resour. Technol. 128, 79-87 (2006) · doi:10.1115/1.2134735
[20] Hewett, T.A., Yamada, T.: Theory for the semi-analytical calculation of oil recovery and effective relative permeabilities using streamtubes. Adv. Water Resour. 20(5), 279-292 (1997) · doi:10.1016/S0309-1708(96)00049-8
[21] Ibrahima, F., Meyer, D.W., Tchelepi, H.: Distribution functions of saturation for stochastic nonlinear two-phase flow. Transp. Porous Media 109, 81-107 (2015) · doi:10.1007/s11242-015-0503-z
[22] Ibrahima, F., Tchelepi, H.A., Meyer, D.W.: Uncertainty quantification of two-phase flow in heterogeneous reservoirs using a streamline-based Pdf formulation. In: ECMOR XV-15th European Conference on the Mathematics of Oil Recovery. Amsterdam (2016)
[23] Jarman, K.D., Russell, T.F.: Moment equations for stochastic immiscible flow. Technical Report 181. Center for Computational Mathematics, University of Colorado at Denver, vol. 181 (2002) · Zbl 1013.76088
[24] Jarman, K.D., Tartakovsky, A.M.: Divergence of solutions to solute transport moment equations. Geophys. Res. Lett. 35(15) (2008)
[25] Le Maitre, O., Knio, H., Najm, H., Ghanem, R.: Uncertainty propagation using wiener-haar expansions. J. Comput. Phys. 197, 28-57 (2004) · Zbl 1052.65114 · doi:10.1016/j.jcp.2003.11.033
[26] Li, L., Tchelepi, H.A.: Conditional statistical moment equations for dynamic data integration in heterogeneous reservoirs. In: SPE Reservoir Simulation Symposium. Houston (2005)
[27] Liao, Q., Zhang, D.: Probabilistic collocation method for strongly nonlinear problems: 1. Transform by location. Water Resour. Res. 49, 7911-7928 (2013) · doi:10.1002/2013WR014055
[28] Liao, Q., Zhang, D.: Probabilistic collocation method for strongly nonlinear problems: 2. Transform by displacement. Water Resour. Res. 50, 8736-8759 (2014) · doi:10.1002/2014WR016238
[29] Liu, G., Lu, Z., Zhang, D.: Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Loève-based moment equation approach. Water Resour. Res. 43(7) (2007)
[30] Loève, M.: Probability Theory, vol. 45. Springer-Verlag, Berlin (1977) · Zbl 0359.60001
[31] Mallison, B.T., Gerritsen, M.G., Matringe, S.F.: Improved mappings for streamline-based simulation. SPE J. 11(3), 294-302 (2006) · doi:10.2118/89352-PA
[32] Mariethoz, G., Caers, J.: Multiple-point Geostatistics: Stochastic Modeling with Training Images. Wiley-Blackwell, New York (2014) · doi:10.1002/9781118662953
[33] Matringe, S.F., Gerritsen, M.G.: On accurate tracing of streamlines. In: SPE Annual Technical Conference and Exhibition. Houston (2004)
[34] Meyer, D.W., Jenny, P., Tchelepi, H.A.: A joint velocity-concentration PDF method for tracer flow in heterogeneous porous media. Water Resour. Res. 46(12) (2010)
[35] Meyer, D.W., Tchelepi, H.A.: Particle-based transport model with Markovian velocity process for tracer dispersion in highly heterogeneous porous media. Water Resour. Res. 46(11) (2010)
[36] Meyer, D.W., Tchelepi, H.A., Jenny, P.: A fast simulation method for uncertainty quantification of subsurface flow and transport. Water Resour. Res. 49(5), 2359-2379 (2013) · doi:10.1002/wrcr.20240
[37] Müller, F., Jenny, P., Meyer, D.W.: Multilevel Monte Carlo for two phase flow and Buckley-Leverett transport in random heterogeneous porous media. J. Comput. Phys. 250, 685-702 (2013) · doi:10.1016/j.jcp.2013.03.023
[38] Muskat, M., Wyckoff, R.: Theoretical analysis of waterflooding networks. Trans. AIME 107, 62-77 (1934) · doi:10.2118/934062-G
[39] Peaceman, D.W.: Fundamentals of numerical reservoir simulation. Elsevier, Amsterdam (1977)
[40] Pollock, D.: Semianalytical computation of path lines for finite-difference models. Ground Water 26, 743-750 (1988) · doi:10.1111/j.1745-6584.1988.tb00425.x
[41] Pope, S.B.: PDF methods for turbulent reactive flows. Progress Energy Combust. Sci. 11, 119-192 (1985) · doi:10.1016/0360-1285(85)90002-4
[42] Shahvali, M., Mallison, B., Wei, K., Gross, H.: An alternative to streamlines for flow diagnostics on structured and unstructured grids. SPE J. 17(3), 768-778 (2012) · doi:10.2118/146446-PA
[43] Tartakovsky, D.M., Broyda, S.: PDF equations for advective-reactive transport in heterogeneous porous media with uncertain properties. J. Contam. Hydrol. 120, 129-140 (2011) · doi:10.1016/j.jconhyd.2010.08.009
[44] Thiele, M.R., Batycky, R.P., Blunt, M.J., Orr, F.M.: Modeling flow in heterogeneous media using streamtubes and streamlines. SPE 10, 5-12 (1996)
[45] Venturi, D., Tartakovsky, D.M., Tartakovsky, A.M., Karniadakis, G.E.: Exact PDF equations and closure approximations for advective-reactive transport. J. Comput. Phys. 243, 323-343 (2013) · Zbl 1349.35068 · doi:10.1016/j.jcp.2013.03.001
[46] Wang, P., Tartakovsky, D.M., Jarman, K.D., Tartakovsky, A.M.: CDF solutions of Buckley-Leverett equation with uncertain parameters. Multiscale Model. Simul. 11(1), 118-133 (2013) · Zbl 1267.76088 · doi:10.1137/120865574
[47] Wied, D., Weissbach, R.: Consistency of the kernel density estimator: a survey. Stat. Papers 53, 1-21 (2012) · Zbl 1241.62049 · doi:10.1007/s00362-010-0338-1
[48] Zhang, D.: Stochastic Methods for Flow in Porous Media: Coping with Uncertainties. Academic Press, Cambridge (2002)
[49] Zhang, D., Li, L., Tchelepi, H.A.: Stochastic formulation for uncertainty analysis of two-phase flow in heterogeneous reservoirs. SPE J. 5(1), 60-70 (2000) · doi:10.2118/59802-PA
[50] Zhang, D., Tchelepi, H.A.: Stochastic analysis of immiscible two-phase flow in heterogeneous media. SPE J. 4(4), 380-388 (1999) · doi:10.2118/59250-PA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.