Hybrid three-scale model for evolving pore-scale geometries. (English) Zbl 1405.76050

Summary: We consider flow and upscaling of flow properties from pore scale to Darcy scale, when the pore-scale geometry is changing. The idea is to avoid having to solve for the pore evolution at the pore scale, because this results in unmanageable complexity. We propose to use stochastic modeling to parametrize plausible modifications of the pore geometry and to construct distributions of permeability parametrized by Darcy-scale variables. To localize the effects of, e.g., clogging, we introduce an intermediate scale of pore-network models. We use local Stokes solvers to calibrate the throat permeability.


76S05 Flows in porous media; filtration; seepage
76M12 Finite volume methods applied to problems in fluid mechanics
Full Text: DOI


[1] Angot, P., Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows, Math. Methods Appl. Sci., 22, 1395-1412, (1999) · Zbl 0937.35129
[2] Angot, P.; Bruneau, CH; Fabrie, P., A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., 81, 497-520, (1999) · Zbl 0921.76168
[3] Arbogast, T.; Brunson, DS, A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium, Comput. Geosci., 11, 207, (2007) · Zbl 1186.76660
[4] Arbogast, T.; Lehr, HL, Homogenization of a Darcy-Stokes system modeling vuggy porous media, Comput. Geosci., 10, 291-302, (2006) · Zbl 1197.76122
[5] Auriault, JL, On the domain of validity of Brinkman’s equation, Transp. Porous Media, 79, 215-223, (2009)
[6] Balhoff, MT; Thomas, SG; Wheeler, MF, Mortar coupling and upscaling of pore-scale models, Comput. Geosci., 12, 15-27, (2008) · Zbl 1153.76421
[7] Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1972) · Zbl 1191.76001
[8] Bear, J., Cheng, A.D.: Modeling Groundwater Flow and Contaminant Transport, vol. 23. Springer Science & Business Media (2010) · Zbl 1195.76002
[9] Blunt, MJ, Flow in porous media-pore-network models and multiphase flow, Curr. Opin. Colloid Interface Sci., 6, 197-207, (2001)
[10] Boffi, D., Brezzi, F., Fortin, M., et al.: Mixed Finite Element Methods and Applications, vol. 44. Springer, Berlin (2013) · Zbl 1277.65092
[11] Bringedal, C.; Berre, I.; Pop, IS; Radu, FA, A model for non-isothermal flow and mineral precipitation and dissolution in a thin strip, J. Comput. Appl. Math., 289, 346-355, (2015) · Zbl 1322.80002
[12] Cai, R.; Lindquist, WB; Um, W.; Jones, KW, Tomographic analysis of reactive flow induced pore structure changes in column experiments, Adv. Water Resour., 32, 1396-1403, (2009)
[13] Canuto, C.; Kozubek, T., A fictitious domain approach to the numerical solution of PDEs in stochastic domains, Numer. Math., 107, 257-293, (2007) · Zbl 1126.65004
[14] Cesmelioglu, A.; Girault, V.; Riviere, B., Time-dependent coupling of Navier-Stokes and Darcy flows, ESAIM: Math. Model. Numer. Anal., 47, 539-554, (2013) · Zbl 1267.76096
[15] Chu, J.; Engquist, B.; Prodanovic, M.; Tsai, R., A multiscale method coupling network and continuum models in porous media i: steady-state single phase flow, Multiscale Model. Simul., 10, 515-549, (2012) · Zbl 1428.76115
[16] Costa, T.B.: Hybrid multiscale methods with applications to semiconductors, porous media, and materials science. Ph.D. thesis (2016)
[17] Costa, T.B.: HybGe-Flow3D v2.0.0. https://github.com/numsol/HybGe-Flow3D (2017)
[18] Crandell, L.; Peters, CA; Um, W.; Jones, KW; Lindquist, WB, Changes in the pore network structure of hanford sediment after reaction with caustic tank wastes, J. Contam. Hydrol., 131, 89-99, (2012)
[19] Dong, H.; Blunt, MJ, Pore-network extraction from micro-computerized-tomography images, Physical Rev. E, 80, 036307, (2009)
[20] Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, vol. 159. Springer Science & Business Media, New York (2013)
[21] Eymard, R.; Gallouët, T.; Herbin, R., Finite volume methods, Handb. Numer. Anal., 7, 713-1018, (2000) · Zbl 0981.65095
[22] Gibson, NL; Medina, FP; Peszynska, M.; Showalter, RE, Evolution of phase transitions in methane hydrate, J. Math. Anal. Appl., 409, 816-833, (2014) · Zbl 1310.35051
[23] Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations(book) (Lecture Notes in Mathematics), vol. 749. Springer, Berlin (1979) · Zbl 0413.65081
[24] Gordon, A.; Powell, CE, A preconditioner for fictitious domain formulations of elliptic PDEs on uncertain parameterized domains, SIAM/ASA J. Uncertain. Quantif., 2, 622-646, (2014) · Zbl 1307.65010
[25] Harbrecht, H., Peters, M.: Combination technique based second moment analysis for PDEs on random domains. In: Sparse Grids and Applications - Stuttgart, pp 51-77. Springer, Cham (2014) · Zbl 1339.65015
[26] Harbrecht, H., Peters, M., Siebenmorgen, M.: Numerical solution of elliptic diffusion problems on random domains. Preprint 2014-08, Mathematisches Institut, Universität Basel (2014) · Zbl 1479.35969
[27] Hassanizadeh, M.; Gray, WG, General conservation equations for multi-phase systems: 1. Averaging procedure, Adv. Water Resour., 2, 131-144, (1979)
[28] Hassanizadeh, M.; Gray, WG, General conservation equations for multi-phase systems: 2. Mass, momenta, energy, and entropy equations, Adv. Water Resour., 2, 191-203, (1979)
[29] Hornung, U.: Homogenization and Porous Media, vol. 6. Springer Science & Business Media, New Year (2012)
[30] Kim, D., Peters, C., Lindquist, W.: Upscaling geochemical reaction rates accompanying acidic CO2-saturated brine flow in sandstone aquifers. Water Resour. Res. 47(1) (2011)
[31] Krotkiewski, M.; Ligaarden, IS; Lie, KA; Schmid, DW, On the importance of the Stokes-Brinkman equations for computing effective permeability in karst reservoirs, Commun. Comput. Phys., 10, 1315-1332, (2011) · Zbl 1373.86003
[32] Labs, P.: Paralution v1.0.0. http://www.paralution.com/ (2015)
[33] Lindquist, W.B., Lee, S., Oh, W., Venkatarangan, A., Shin, H., Prodanovic, M.: 3DMA-Rock: a software package for automated analysis of rock pore structure in 3-D computed microtomography images. SUNY Stony Brook (2005)
[34] Lukarski, M.S.D.: Parallel sparse linear algebra for multi-core and many-core platforms. Ph.D. thesis, Georgia Institute of Technology (2012)
[35] Mahabadi, N.; Dai, S.; Seol, Y.; Sup Yun, T.; Jang, J., The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation, Geochem. Geophys. Geosyst., 17, 3099-3110, (2016)
[36] Medina, F.P., Peszynska, M.: Hybrid modeling and analysis of multicomponent adsorption with applications to coalbed methane. In: Wolfe, D. (ed.) Porous Media: Theory, Properties, and Applications, chapter 1, pp 1-52. Nova, Commack (2016)
[37] Mikelic, A.; Jäger, W., On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. Math., 60, 1111-1127, (2000) · Zbl 0969.76088
[38] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261, (2005) · Zbl 1117.76049
[39] Ossiander, M.; Peszynska, M.; Vasylkivska, V., Conditional Stochastic Simulations of Flow and Transport with Karhunen-Loeve Expansions, Stochastic Collocation, and Sequential Gaussian Simulation, J. Appl. Math., 2014, 21, (2014)
[40] Ossiander, M.; Peszynska, M.; Madsen, L.; Mur, A.; Harbert, W., Estimation and simulation for geospatial porosity and permeability data, Environ. Ecol. Stat., 24, 109, (2017)
[41] Patankar, S.: Numerical heat transfer and fluid flow. CRC Press, Boca Raton (1980) · Zbl 0521.76003
[42] Peskin, CS, The immersed boundary method, Acta Numer., 11, 479-517, (2002) · Zbl 1123.74309
[43] Peszyńska, M.; Wheeler, MF; Yotov, I., Mortar upscaling for multiphase flow in porous media, Comput. Geosci., 6, 73-100, (2002) · Zbl 1056.76048
[44] Peszyńska, M., Trykozko, A., Augustson, K.: Computational upscaling of inertia effects from porescale to mesoscale, pp 695-704. Springer, Berlin (2009)
[45] Peszynska, M.; Trykozko, A., Convergence and Stability in Upscaling of Flow with Inertia from Porescale to Mesoscale, Int. J. Multiscale Comput. Eng., 9, 215-229, (2011)
[46] Peszynska, M.; Trykozko, A., Pore-to-core simulations of flow with large velocities using continuum models and imaging data, Comput. Geosci., 17, 623-645, (2013) · Zbl 1387.76087
[47] Peszynska, M.; Trykozko, A.; Iltis, G.; Schlueter, S.; Wildenschild, D., Biofilm growth in porous media: experiments, computational modeling at the porescale, and upscaling, Adv. Water Resour., 95, 288-301, (2016)
[48] Prodanović, M.; Lindquist, W.; Seright, R., 3D image-based characterization of fluid displacement in a Berea core, Adv. Water Resour., 30, 214-226, (2007)
[49] Pruess, K.; Garcia, J., Multiphase flow dynamics during CO2 disposal into saline aquifers, Environ. Geol., 42, 282-295, (2002)
[50] Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. CMCS-BOOK-2009-019. Oxford University Press, Oxford (1999)
[51] Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: an Introduction, vol. 92. Springer, Berlin (2015)
[52] Raoof, A.; Hassanizadeh, SM; Leijnse, A., Upscaling transport of adsorbing solutes in porous media: pore-network modeling, Vadose Zone J., 9, 624-636, (2010)
[53] Raoof, A.; Nick, H.; Hassanizadeh, S.; Spiers, C., Poreflow: a complex pore-network model for simulation of reactive transport in variably saturated porous media, Comput. Geosci., 61, 160-174, (2013)
[54] Russell, T.F., Wheeler, M.F.: Finite element and finite difference methods for continuous flows in porous media. In: The Mathematics of Reservoir Simulation, vol. 1, pp 35-106 (1983)
[55] Sánchez-Palencia, E.: Non-homogeneous media and vibration theory. In: Non-homogeneous Media and Vibration Theory, vol. 127 (1980) · Zbl 0432.70002
[56] Schulz, R.; Ray, N.; Frank, F.; Mahato, H.; Knabner, P., Strong solvability up to clogging of an effective diffusion-precipitation model in an evolving porous medium, Eur. J. Appl. Math., 28, 179-207, (2017) · Zbl 1386.82065
[57] Silin, D.; Patzek, T., Pore space morphology analysis using maximal inscribed spheres, Phys. A: Stat. Mech. Appl., 371, 336-360, (2006)
[58] Spiteri, E., Juanes, R., Blunt, M.J., Orr, F.M., et al.: Relative-permeability hysteresis: trapping models and application to geological CO2 sequestration. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2005)
[59] Tartar, L.: Convergence of the homogenization process. In: Nonhomogeneous Media and Vibration Theory (1980)
[60] Trykozko, A.; Brouwer, G.; Zijl, W., Downscaling: a complement to homogenization, Int. J. Numer. Anal. Model., 5, 157-170, (2008) · Zbl 1168.76040
[61] Trykozko, A.; Zijl, W.; Bossavit, A., Nodal and mixed finite elements for the numerical homogenization of 3D permeability, Comput. Geosci., 5, 61-84, (2001) · Zbl 0978.86003
[62] van Noorden, T.L., Pop, I., Ebigbo, A., Helmig, R.: An upscaled model for biofilm growth in a thin strip. Water Resour. Res. 46(6) (2010)
[63] Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: the Finite Volume Method. Pearson Education (2007)
[64] Vo, HX; Durlofsky, LJ, A new differentiable parameterization based on principal component analysis for the low-dimensional representation of complex geological models, Math. Geosci., 46, 775-813, (2014) · Zbl 1323.86048
[65] Weinan, E.; Engquist, B.; Li, X.; Ren, W.; Vanden-Eijnden, E., Heterogeneous multiscale methods: a review, Commun. Comput. Phys., 2, 367-450, (2007) · Zbl 1164.65496
[66] Whitaker, S.: Volume averaging of transport equations. In: Prieur du Plessis, J (ed.) Fluid Transport in Porous Media. Computational Mechanics Publications, Southampton (1997)
[67] Xiu, D.: Numerical Methods for Stochastic Computations: a Spectral Method Approach. Princeton University Press, Princeton (2010) · Zbl 1210.65002
[68] Xiu, D.; Tartakovsky, DM, Numerical methods for differential equations in random domains, SIAM J. Sci. Comput., 28, 1167-1185, (2006) · Zbl 1114.60056
[69] Zijl, W.; Trykozko, A., Numerical homogenization of the absolute permeability using the conformal-nodal and mixed-hybrid finite element method, Transp. Porous Media, 44, 33-62, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.