×

zbMATH — the first resource for mathematics

Chaplygin top with a periodic gyrostatic moment. (English) Zbl 1435.70019
Summary: In the paper, a study of rolling of a dynamically asymmetrical unbalanced ball (Chaplygin top) on a horizontal plane under the action of periodic gyrostatic moment is carried out. The problem is considered in the framework of the model of a rubber body, i.e., under the assumption that there is no slipping and spinning at the point of contact. It is shown that, for certain values of the parameters of the system and certain dependence of the gyrostatic moment on time, an acceleration of the system, i.e., an unbounded growth of the energy of the system, is observed. Investigations of the dependence of the presence of acceleration on the parameters of the system and on the initial conditions are carried out. On the basis of the investigations of the dynamics of the frozen system, a conjecture concerning the general mechanism of acceleration at the expense to periodic impacts in nonholonomic systems is expressed.

MSC:
70E18 Motion of a rigid body in contact with a solid surface
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Borisov, A. V.; Kilin, A. A.; Mamaev, I. S., On the Hadamard - Hamel Problem and the Dynamics of Wheeled Vehicles, Regul. Chaotic Dyn., 20, 752-766, (2015) · Zbl 1367.70034
[2] I. A. Bizyaev, A. V. Borisov, V. V. Kozlov, and I. S. Mamaev, “Fermi-Like Acceleration and Power-Law Energy Growth in Nonholonomic Systems,” submitted to Nonlinearity.
[3] Bizyaev, I. A.; Borisov, A. V.; Kuznetsov, S. P., Chaplygin Sleigh with Periodically Oscillating Internal Mass, EPL, 119, 60008, (2017)
[4] Bizyaev, I. A.; Borisov, A. V.; Mamaev, I. S., The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration, Regul. Chaotic Dyn., 22, 955-975, (2017) · Zbl 1398.37056
[5] Fermi, E., On the Origin of the Cosmic Radiation, Phys. Rev., 75, 1169-1174, (1949) · Zbl 0032.09604
[6] Ulam, S. M., On Some Statistical Properties of Dynamical Systems, Proc. of the 4th Berkeley Symposium on Mathematical Statistics and Probability, 3, 315-320, (1961) · Zbl 0106.43102
[7] Lenz, F.; Diakonos, F. K.; Schmelcher, P., Tunable Fermi Acceleration in the Driven Elliptical Billiard, Phys. Rev. Lett., 100, 014103, (2008)
[8] Pereira, T.; Turaev, D., Fast Fermi Acceleration and Entropy Growth, Math. Model. Nat. Phenom., 10, 31-47, (2015) · Zbl 1327.35342
[9] Bolotin, S.; Treschev, D., Unbounded Growth of Energy in Nonautonomous Hamiltonian Systems, Nonlinearity, 12, 365-388, (1999) · Zbl 0989.37050
[10] Koiller, J.; Markarian, R.; Kamphorst, S. O.; Pinto de Carvalho, S., Static and Time-Dependent Perturbations of the Classical Elliptical Billiard, J. Statist. Phys., 83, 127-143, (1996) · Zbl 1081.37530
[11] Gelfreich, V.; Turaev, D., Fermi Acceleration in Non-Autonomous Billiards, J. Phys. A, 41, 212003, (2008) · Zbl 1139.37041
[12] Gelfreich, V.; Rom-Kedar, V.; Turaev, D., Fermi Acceleration and Adiabatic Invariants for Non-Autonomous Billiards, Chaos, 22, 033116, (2012) · Zbl 1319.37039
[13] Shah, K.; Gelfreich, V.; Rom-Kedar, V.; Turaev, D., Leaky Fermi Accelerators, Phys. Rev. E, 91, 062920, (2015)
[14] Borisov, A. V.; Kilin, A. A.; Mamaev, I. S., How to Control Chaplygin’s Sphere Using Rotors, Regul. Chaotic Dyn., 17, 258-272, (2012) · Zbl 1264.37016
[15] Karavaev, Y. L.; Kilin, A. A., The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform, Regul. Chaotic Dyn., 20, 134-152, (2015) · Zbl 1317.93192
[16] Kilin, A. A.; Pivovarova, E. N.; Ivanova, T. B., Spherical Robot of Combined Type: Dynamics and Control, Regul. Chaotic Dyn., 20, 716-728, (2015) · Zbl 1339.93081
[17] Borisov, A. V.; Mamaev, I. S.; Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 18, 277-328, (2013) · Zbl 1367.70007
[18] Cendra, H.; Etchechoury, M., Rolling of a Symmetric Sphere on a Horizontal Plane without Sliding or Slipping, Rep. Math. Phys., 57, 367-374, (2006) · Zbl 1134.70005
[19] Ehlers, K. M.; Koiller, J., Rubber Rolling: Geometry and Dynamics of 2 - 3 - 5 Distributions, 469-480, (2006) · Zbl 1207.70013
[20] Koiller, J.; Ehlers, K. M., Rubber Rolling over a Sphere, Regul. Chaotic Dyn., 12, 127-152, (2007) · Zbl 1229.37089
[21] A. V. Borisov and I. S. Mamaev, Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos (R&C Dynamics, Institute of Computer Science, Izhevsk, 2005) (Russian). · Zbl 1114.70001
[22] Borisov, A. V.; Mamaev, I. S.; Vetchanin, E. V., Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation, Regul. Chaotic Dyn., 23, 480-502, (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.