Exact theory of material spike formation in flow separation. (English) Zbl 1406.76014

Summary: We develop a frame-invariant theory of material spike formation during flow separation over a no-slip boundary in two-dimensional flows with arbitrary time dependence. Based on the exact curvature evolution of near-wall material lines, our theory identifies both fixed and moving flow separation, is effective also over short time intervals, and admits a rigorous instantaneous limit. As a byproduct, we derive explicit formulae for the evolution of material line curvature and the curvature rate for general compressible flows. The material backbone that we identify acts first as the precursor and later as the centrepiece of unsteady Lagrangian flow separation. We also discover a previously undetected spiking point where the backbone of separation connects to the boundary, and derive wall-based analytical formulae for its location. Finally, our theory explains the perception of off-wall separation in unsteady flows and provides conditions under which such a perception is justified. We illustrate our results on several analytical and experimental flows.


76D10 Boundary-layer theory, separation and reattachment, higher-order effects


Full Text: DOI Link


[1] Arnold, V., Ordinary Differential Equations, (1973), MIT Press · Zbl 0296.34001
[2] Benczik, I. J.; Toroczkai, Z.; Tél, T., Selective sensitivity of open chaotic flows on inertial tracer advection: catching particles with a stick, Phys. Rev. Lett., 89, 16, (2002)
[3] Bewley, T. R.; Protas, B., Skin friction and pressure: the ‘footprints’ of turbulence, Physica D, 196, 12, 28-44, (2004) · Zbl 1060.76068
[4] Cassel, K. W.; Conlisk, A. T., Unsteady separation in vortex-induced boundary layers, Phil. Trans. R. Soc. Lond. A, 372, 2020, (2014) · Zbl 1353.76017
[5] Farazmand, M.; Haller, G., Computing Lagrangian coherent structures from their variational theory, Chaos, 22, (2012) · Zbl 1331.37128
[6] Garth, C., Li, G.-S., Tricoche, X., Hansen, C. D. & Hagen, H.2009Visualization of coherent structures in transient 2d flows. In Topology-Based Methods in Visualization II, pp. 1-13. Springer. · Zbl 1188.68339
[7] Gurtin, M. E.1982An Introduction to Continuum Mechanics, vol. 158. Academic. · Zbl 0559.73001
[8] Haller, G., Finding finite-time invariant manifolds in two-dimensional velocity fields, Chaos, 10, 1, 99-108, (2000) · Zbl 0979.37012
[9] Haller, G., Exact theory of unsteady separation for two-dimensional flows, J. Fluid Mech., 512, 257-311, (2004) · Zbl 1066.76054
[10] Haller, G., Lagrangian coherent structures, Annu. Rev. Fluid. Mech., 47, 137-162, (2015)
[11] Jung, C.; Tél, T.; Ziemniak, E., Application of scattering chaos to particle transport in a hydrodynamical flow, Chaos, 3, 4, 555-568, (1993)
[12] Kilic, M. S.; Haller, G.; Neishtadt, A., Unsteady fluid flow separation by the method of averaging, Phys. Fluids, 17, 6, (2005) · Zbl 1187.76269
[13] Klonowska-Prosnak, M. E.; Prosnak, W. J., An exact solution to the problem of creeping flow around circular cylinder rotating in presence of translating plane boundary, Acta Mechanica, 146, 1, 115-126, (2001) · Zbl 1014.76095
[14] Liu, C. S.; Wan, Y.-H., A simple exact solution of the Prandtl boundary layer equations containing a point of separation, Arch. Rat. Mech. Anal., 89, 2, 177-185, (1985) · Zbl 0577.76036
[15] Miron, P.; Vétel, J., Towards the detection of moving separation in unsteady flows, J. Fluid Mech., 779, 819-841, (2015) · Zbl 1360.76087
[16] Moore, F. K.1958On the separation of the unsteady laminar boundary layer. In Grenzschichtforschung/Boundary Layer Research, pp. 296-311. Springer.
[17] Nelson, D. A.; Jacobs, G. B., DG-FTLE: Lagrangian coherent structures with high-order discontinuous-Galerkin methods, J. Comput. Phys., 295, 65-86, (2015) · Zbl 1349.76244
[18] Nelson, D. A.; Jacobs, G. B., High-order visualiszation of three-dimensional Lagrangian coherent structures with DG-FTLE, Comput. Fluids, 139, 197-215, (2016) · Zbl 1390.76342
[19] Prandtl, L., Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandl III, Intern. Math. Kongr. Heidelberg, Auch: Gesammelte Abhandlungen, 2, 484-491, (1904)
[20] Rott, N., Unsteady viscous flow in the vicinity of a stagnation point, Q. Appl. Maths, 13, 4, 444-451, (1956) · Zbl 0070.19704
[21] Ruban, A. I.; Araki, D.; Yapalparvi, R.; Gajjar, J. S. B., On unsteady boundary-layer separation in supersonic flow. Part 1. Upstream moving separation point, J. Fluid Mech., 678, 124-155, (2011) · Zbl 1241.76339
[22] Sears, W. R. & Telionis, D. P.1971Unsteady boundary-layer separation. In Recent Research on Unsteady Boundary Layers, vol. 1, pp. 404-447. Laval University Press.
[23] Sears, W. R.; Telionis, D. P., Boundary-layer separation in unsteady flow, SIAM J. Appl. Maths, 28, 1, 215-235, (1975) · Zbl 0276.76016
[24] Shariff, K.; Pulliam, T. H.; Ottino, J. M., A dynamical systems analysis of kinematics in the time-periodic wake of a circular cylinder, Lect. Appl. Math, 28, 613-646, (1991) · Zbl 0751.76028
[25] Surana, A.; Grunberg, O.; Haller, G., Exact theory of three-dimensional flow separation. Part 1. Steady separation, J. Fluid Mech., 564, 57-103, (2006) · Zbl 1100.76056
[26] Surana, A.; Haller, G., Ghost manifolds in slow – fast systems, with applications to unsteady fluid flow separation, Physica D, 237, 10, 1507-1529, (2008) · Zbl 1143.76433
[27] Surana, A.; Jacobs, G. B.; Grunberg, O.; Haller, G., An exact theory of three-dimensional fixed separation in unsteady flows, Phys. Fluids, 20, 10, (2008) · Zbl 1182.76731
[28] Sychev, V. V.; Sychev, V. V., Asymptotic Theory of Separated Flows, (1998), Cambridge University Press · Zbl 0944.76003
[29] Truesdell, C.; Noll, W., The Non-Linear Field Theories of Mechanics, (2004), Springer · Zbl 0779.73004
[30] Van Dommelen, L. L., Unsteady Boundary Layer Separation, (1981), Cornell University · Zbl 0686.76022
[31] Van Dommelen, L. L. & Shen, S. F.1982The genesis of separation. In Numerical and Physical Aspects of Aerodynamic Flows, pp. 293-311. Springer. · Zbl 0529.76041
[32] Weldon, M.; Peacock, T.; Jacobs, G. B.; Helu, M.; Haller, G., Experimental and numerical investigation of the kinematic theory of unsteady separation, J. Fluid Mech., 611, 1-11, (2008) · Zbl 1151.76433
[33] Williams, J. C., Incompressible boundary-layer separation, Annu. Rev. Fluid Mech., 9, 1, 113-144, (1977)
[34] Yuster, T.; Hackborn, W. W., On invariant manifolds attached to oscillating boundaries in Stokes flows, Chaos, 7, 4, 769-776, (1997) · Zbl 0962.76518
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.