×

zbMATH — the first resource for mathematics

Understanding the intracellular-to-extracellular localization switch of polyhydroxybutyrate polymerase in Pseudomonas backgrounds as a microevolutionary process. (English) Zbl 1406.92216
Summary: After gene duplication, paralogous genes evolve independently, and consequently, the new proteins encoded by these duplicated genes are exposed to changes in their subcellular location. Although there are increasing evidence that phylogenetically related proteins play different functions in different subcellular compartments, the number of evolutionary steps required for the emergence of a novel protein with a novel subcellular localization remains unclear. Regarding this intriguing topic, here we examine in depth our previous reports describing both intracellular and extracellular polyhydroxybutyrate polymerases (PhaC) in the Pseudomonadales group. The recapitulation of the intracellular-to-extracellular localization switch of PhaC in these strains shows a gradual evolution from a simple cytosolic PhaC form to a complex extracellular PhaC form specifically secreted via the type 1 secretion system. This gradual evolution includes several adaptive and pre-adaptive changes at the genomic, genetic and enzymatic levels, which are intimately related to the lifestyle of organisms during the evolution of protein localization. We conclude that the protein localization switch can be an extremely complex process in nature.
MSC:
92C40 Biochemistry, molecular biology
92D15 Problems related to evolution
Software:
Phobius; Psortb; VMD
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ayub, N. D.; Tribelli, P. M.; Lopez, N. I., Polyhydroxyalkanoates are essential for maintenance of redox state in the antarctic bacterium pseudomonas sp. 14-3 during low temperature adaptation, Extremophiles, 13, 59-66, (2009)
[2] Ayub, N. D.; Pettinari, M. J.; Ruiz, J. A.; Lopez, N. I., A polyhydroxybutyrate-producing pseudomonas sp. isolated from antarctic environments with high stress resistance, Curr. Microbiol., 49, 170-174, (2004)
[3] Ayub, N. D.; Julia Pettinari, M.; Mendez, B. S.; Lopez, N. I., Impaired polyhydroxybutyrate biosynthesis from glucose in pseudomonas sp. 14-3 is due to a defective beta-ketothiolase gene, FEMS Microbiol. Lett., 264, 125-131, (2006)
[4] Ayub, N. D.; Pettinari, M. J.; Mendez, B. S.; Lopez, N. I., The polyhydroxyalkanoate genes of a stress resistant antarctic pseudomonas are situated within a genomic island, Plasmid, 58, 240-248, (2007)
[5] Boyd, C. D.; Smith, T. J.; El-Kirat-Chatel, S.; Newell, P. D.; Dufrene, Y. F.; O’Toole, G. A., Structural features of the pseudomonas fluorescens biofilm adhesin lapa required for lapg-dependent cleavage, biofilm formation, and cell surface localization, J. Bacteriol., 196, 2775-2788, (2014)
[6] Fox, A. R.; Soto, G.; Mozzicafreddo, M.; Garcia, A. N.; Cuccioloni, M.; Angeletti, M.; Salerno, J. C.; Ayub, N. D., Understanding the function of bacterial and eukaryotic thiolases II by integrating evolutionary and functional approaches, Gene, 533, 5-10, (2014)
[7] Gardy, J. L.; Spencer, C.; Wang, K.; Ester, M.; Tusnady, G. E.; Simon, I.; Hua, S.; deFays, K.; Lambert, C.; Nakai, K.; Brinkman, F. S., PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria, Nucleic Acids Res., 31, 3613-3617, (2003)
[8] Green, E. R.; Mecsas, J., Bacterial secretion systems: an overview, Microbiol. Spectr., 4, (2016)
[9] Humphrey, W.; Dalke, A.; Schulten, K., VMD: visual molecular dynamics, J. Mol. Graph., 14, 33-38, (1996), 27-8
[10] Ivankov, D. N.; Payne, S. H.; Galperin, M. Y.; Bonissone, S.; Pevzner, P. A.; Frishman, D., How many signal peptides are there in bacteria?, Environ. Microbiol., 15, 983-990, (2013)
[11] Kall, L.; Krogh, A.; Sonnhammer, E. L., A combined transmembrane topology and signal peptide prediction method, J. Mol. Biol., 338, 1027-1036, (2004)
[12] Kelley, L. A.; Mezulis, S.; Yates, C. M.; Wass, M. N.; Sternberg, M. J., The phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc., 10, 845-858, (2015)
[13] Kessler, B.; Palleroni, N. J., Taxonomic implications of synthesis of poly-beta-hydroxybutyrate and other poly-beta-hydroxyalkanoates by aerobic pseudomonads, Int. J. Syst. Evolut. Microbiol. 50 Pt, 2, 711-713, (2000)
[14] Lopez, N. I.; Floccaria, M. E.; Steinbüchel, A.; García, A. F.; Méndez, B. S., Effect of poly(3-hydroxybutyrate) (PHB) content on the starvation-survival of bacteria in natural waters, FEMS Microbiol. Ecol., 16, 95-101, (1995)
[15] Palleroni, N. J., Prokaryote taxonomy of the 20th century and the impact of studies on the genus pseudomonas: a personal view, Microbiology, 149, 1-7, (2003)
[16] Pascuan, C.; Fox, A. R.; Soto, G.; Ayub, N. D., Exploring the ancestral mechanisms of regulation of horizontally acquired nitrogenases, J. Mol. Evol., 81, 84-89, (2015)
[17] Pettinari, J. M.; Chaneton, L.; Vazquez, G.; Steinbuchel, A.; Mendez, B. S., Insertion sequence-like elements associated with putative polyhydroxybutyrate regulatory genes in azotobacter sp. FA8, Plasmid, 50, 36-44, (2003)
[18] Pettinari, M. J.; Vazquez, G. J.; Silberschmidt, D.; Rehm, B.; Steinbuchel, A.; Mendez, B. S., Poly(3-hydroxybutyrate) synthesis genes in azotobacter sp. strain FA8, Appl. Environ. Microbiol., 67, 5331-5334, (2001)
[19] Raberg, M.; Volodina, E.; Lin, K.; Steinbuchel, A., Ralstonia eutropha H16 in progress: applications beside PHAs and establishment as production platform by advanced genetic tools, Crit. Rev. Biotechnol., 1-17, (2017)
[20] Soto, G.; Setten, L.; Lisi, C.; Maurelis, C.; Mozzicafreddo, M.; Cuccioloni, M.; Angeletti, M.; Ayub, N. D., Hydroxybutyrate prevents protein aggregation in the halotolerant bacterium pseudomonas sp. CT13 under abiotic stress, Extremophiles, 16, 455-462, (2012)
[21] Soto, G.; Stritzler, M.; Lisi, C.; Alleva, K.; Pagano, M. E.; Ardila, F.; Mozzicafreddo, M.; Cuccioloni, M.; Angeletti, M.; Ayub, N. D., Acetoacetyl-coa thiolase regulates the mevalonate pathway during abiotic stress adaptation, J. Exp. Bot., 62, 5699-5711, (2011)
[22] Steinbuchel, A.; Hein, S., Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms, Adv. Biochem. Eng. Biotechnol., 71, 81-123, (2001)
[23] Stritzler, M.; Diez, A.; Soto, G.; Ayub, N., Genome sequence of plant growth-promoting bacterium pseudomonas fluorescens FR1 reveals a novel type of extracellular polyhydroxybutyrate polymerase involved in abiotic stress response in plants, Biotechnol. Lett., (2018), inpress
[24] Thanabalu, T.; Koronakis, E.; Hughes, C.; Koronakis, V., Substrate-induced assembly of a contiguous channel for protein export from E.coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore, EMBO J., 17, 6487-6496, (1998)
[25] Wittenborn, E. C.; Jost, M.; Wei, Y.; Stubbe, J.; Drennan, C. L., Structure of the catalytic domain of the class I polyhydroxybutyrate synthase from cupriavidus necator, J. Biol. Chem., 291, 25264-25277, (2016)
[26] Yan, Y.; Yang, J.; Dou, Y.; Chen, M.; Ping, S.; Peng, J.; Lu, W.; Zhang, W.; Yao, Z.; Li, H.; Liu, W.; He, S.; Geng, L.; Zhang, X.; Yang, F.; Yu, H.; Zhan, Y.; Li, D.; Lin, Z.; Wang, Y.; Elmerich, C.; Lin, M.; Jin, Q., Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated pseudomonas stutzeri A1501, Proc. Natl. Acad. Sci. USA, 105, 7564-7569, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.