×

zbMATH — the first resource for mathematics

Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition. (English) Zbl 1406.92198
Summary: Venomous animals produce toxins that inhibit ion channels with high affinity. These small peptide inhibitors are used in the characterization of ion channels structurally as well as pharmacologically. So, identification of these toxins is an important task. In this study, based on the pseudo amino acid (PseAA) composition and feature selection method, the random forest algorithm was used for predicting three different groups of ion channel inhibitors. The prediction results indicated that our algorithm achieved the sensitivity of 60.00% for calcium channel inhibitor, 71.90% for potassium channel inhibitor and 86.80% for sodium channel inhibitor when evaluated by the jackknife test. In addition, for comparing with other algorithms, this algorithm was used to predict the dataset with 343 ion channel inhibitors, and the higher predictive success rates than the previous algorithms were obtained by our algorithm.

MSC:
92C40 Biochemistry, molecular biology
62F40 Bootstrap, jackknife and other resampling methods
62P10 Applications of statistics to biology and medical sciences; meta analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arif, M.; Hayat, M.; Jan, Z., Imem-2LSAAC: a two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition, J. Theor. Biol., 442, 11-21, (2018) · Zbl 1397.92180
[2] Boeckmann, B.; Bairoch, A.; Apweiler, R.; Blatter, M. C.; Estreicher, A.; Gasteiger, E.; Martin, M. J.; Michoud, K.; O’Donovan, C.; Phan, I., The SWISS-PROT protein knowledgebase and its supplement trembl in 2003, Nucl. Acids Res., 31, 365-370, (2003)
[3] Breiman, L., Random forests, Mach. Learn., 45, 5-32, (2001) · Zbl 1007.68152
[4] Cai, Y. D.; Lu, L., Predicting N-terminal acetylation based on feature selection method, Biochem. Biophys. Res. Commun., 372, 862-865, (2008)
[5] Catterall, W. A.; Cestèle, S.; Yarov-Yarovoy, V.; Yu, F. H.; Konoki, K.; Scheuer, T., Voltage-gated ion channels and gating modifier toxins, Toxicon, 49, 124-141, (2007)
[6] Chang, C. C.; Lin, C. J., LIBSVM: a library for support vector machines, ACM Trans. Intell. Syst. Technol., 2, 1-27, (2011)
[7] Chen, J.; Liu, H.; Yang, J.; Chou, K. C., Prediction of linear B-cell epitopes using amino acid pair antigenicity scale, Amino Acids, 33, 423-428, (2007)
[8] Chen, W.; Lin, H.; Chou, K. C., Pseudo nucleotide composition or pseknc: an effective formulation for analyzing genomic sequences, Mol. Biosyst., 11, 2620-2634, (2015)
[9] Chen, W.; Feng, P. M.; Lin, H.; Chou, K. C., Irspot-psednc: identify recombination spots with pseudo dinucleotide composition, Nucl. Acids Res, 41, (2013), e68-e68
[10] Chen, W.; Feng, P. M.; Lin, H.; Chou, K. C., Iss-psednc: identifying splicing sites using pseudo dinucleotide composition, Biomed. Res. Int., 2014, (2014)
[11] Chen, W.; Lei, T. Y.; Jin, D. C.; Lin, H.; Chou, K. C., Pseknc: a flexible web server for generating pseudo K-tuple nucleotide composition, Anal. Biochem., 456, 53-60, (2014)
[12] Chen, W.; Feng, P. M.; Deng, E. Z.; Lin, H.; Chou, K. C., Itis-psetnc: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition, Anal. Biochem., 462, 76-83, (2014)
[13] Chen, W.; Feng, P. M.; Ding, H.; Lin, H.; Chou, K. C., Irna-methyl: identifying N6-methyladenosine sites using pseudo nucleotide composition, Anal. Biochem., 490, 26-33, (2015)
[14] Chen, W.; Ding, H.; Feng, P. M.; Lin, H.; Chou, K. C., Iacp: a sequence-based tool for identifying anticancer peptides, Oncotarget, 7, 16895-16909, (2016)
[15] Chen, W.; Feng, P. M.; Ding, H.; Lin, H.; Chou, K. C., Using deformation energy to analyze nucleosome positioning in genomes, Genomics, 107, 69-75, (2016)
[16] Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K. C., Irna-pseu: identifying RNA pseudouridine sites, Mol. Ther. Nucl. Acids, 5, e332, (2016)
[17] Chen, W.; Feng, P. M.; Yang, H.; Ding, H.; Lin, H.; Chou, K. C., Irna-AI: identifying the adenosine to inosine editing sites in RNA sequences, Oncotarget, 8, 4208-4217, (2017)
[18] Chen, W.; Feng, P. M.; Yang, H.; Ding, H.; Lin, H.; Chou, K. C., Irna-3typea: identifying three types of modification at RNA’s adenosine sites, Mol. Ther. Nucl. Acids, 11, 468-474, (2018)
[19] Cheng, X.; Xiao, X.; Chou, K. C., Ploc-mgneg: predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general pseaac, Genomics, (2017)
[20] Cheng, X.; Xiao, X.; Chou, K. C., Ploc-mvirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general pseaac, Gene, 628, 315-321, (2017)
[21] Cheng, X.; Xiao, X.; Chou, K. C., Ploc-mplant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general pseaac, Mol. Biosyst., 13, 1722-1727, (2017)
[22] Cheng, X.; Xiao, X.; Chou, K. C., Ploc-mhum: predict subcellular localization of multi-location human proteins via general pseaac to winnow out the crucial GO information, Bioinformatics, 34, 1448-1456, (2018)
[23] Cheng, X.; Xiao, X.; Chou, K. C., Ploc-meuk: predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general pseaac, Genomics, 110, 50-58, (2018)
[24] Cheng, X.; Zhao, S. G.; Xiao, X.; Chou, K. C., Iatc-mhyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals, Oncotarget, 8, 58494-58503, (2017)
[25] Cheng, X.; Zhao, S. G.; Xiao, X.; Chou, K. C., Iatc-misf: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals, Bioinformatics, 33, 341-346, (2017)
[26] Cheng, X.; Zhao, S. G.; Lin, W. Z.; Xiao, X.; Chou, K. C., Ploc-manimal: predict subcellular localization of animal proteins with both single and multiple sites, Bioinformatics, 33, 3524-3531, (2017)
[27] Chou, K. C., Using subsite coupling to predict signal peptides, Protein Eng., 14, 75-79, (2001)
[28] Chou, K. C., Prediction of signal peptides using scaled window, Peptides, 22, 1973-1979, (2001)
[29] Chou, K. C., Prediction of protein cellular attributes using pseudo-amino acid composition, Proteins: Struct. Funct. Genet., 43, 246-255, (2001)
[30] Chou, K. C., Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes, Bioinformatics, 21, 10-19, (2005)
[31] Chou, K. C., Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology, Curr. Proteomics, 6, 262-274, (2009)
[32] Chou, K. C., Some remarks on protein attribute prediction and pseudo amino acid composition, J. Theor. Biol., 273, 236-247, (2011) · Zbl 1405.92212
[33] Chou, K. C., Some remarks on predicting multi-label attributes in molecular biosystems, Mol. Biosyst., 9, 1092-1100, (2013)
[34] Chou, K. C., Impacts of bioinformatics to medicinal chemistry, Med. Chem., 11, 218-234, (2015)
[35] Chou, K. C., An unprecedented revolution in medicinal chemistry driven by the progress of biological science, Curr. Top Med. Chem., 17, 2337-2358, (2017)
[36] Chou, K. C.; Shen, H. B., Reveiw: recent advances in developing web-servers for predicting protein attributes, Nat. Sci., 1, 63-92, (2009)
[37] Chou, K. C.; Wu, Z. C.; Xiao, X., Iloc-euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins, PLoS One, 6, e18258, (2011)
[38] Chou, K. C.; Wu, Z. C.; Xiao, X., Iloc-hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites, Mol. Biosyst., 8, 629-641, (2012)
[39] Dhawan, R.; Varshney, A.; Mathew, M. K.; Lala, A. K., BTK-2, a new inhibitor of the kv1.1 potassium channel purified from Indian scorpion buthus tamulus, FEBS Lett., 539, 7-13, (2003)
[40] Ding, C.; Peng, H., Minimum redundancy feature selection from microarray gene expression data, J. Bioinform. Comput. Biol., 3, 185-205, (2005)
[41] Ding, H.; Deng, E. Z.; Yuan, L. F.; Liu, L.; Lin, H.; Chen, W.; Chou, K. C., Ictx-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels, Biomed. Res. Int., 2014, (2014)
[42] Diochot, S.; Salinas, M.; Baron, A.; Escoubas, P.; Lazdunski, M., Peptides inhibitors of acid-sensing ion channels, Toxicon, 49, 271-284, (2007)
[43] Fan, Y. N.; Xiao, X.; Min, J. L.; Chou, K. C., Inr-drug: predicting the interaction of drugs with nuclear receptors in cellular networking, Int. J. Biol. Sci., 15, 4915-4937, (2014)
[44] Feng, P. M.; Chen, W.; Lin, H.; Chou, K. C., Ihsp-pseraaac: identifying the heat shock protein families using pseudo reduced amino acid alphabet composition, Anal. Biochem., 442, 118-125, (2013)
[45] Feng, P. M.; Ding, H.; Yang, H.; Chen, W.; Lin, H.; Chou, K. C., Irna-psecoll: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into pseknc, Mol. Ther. Nucl. Acids, 7, 155-163, (2017)
[46] Feng, P. M.; Yang, H.; Ding, H.; Lin, H.; Chen, W.; Chou, K. C., Idna6ma-pseknc: identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into pseknc, Genomics, 01, (2018)
[47] Frank, E.; Hall, M.; Trigg, L.; Holmes, G.; Witten, I. H., Data mining in bioinformatics using weka, Bioinformatics, 20, 2479-2481, (2004)
[48] He, Z.; Zhang, J.; Shi, X. H.; Hu, L. L.; Kong, X.; Cai, Y. D.; Chou, K. C., Predicting drug-target interaction networks based on functional groups and biological features, PLoS One, 5, e9603, (2010)
[49] Jia, J. H.; Liu, Z.; Xiao, X.; Liu, B. X.; Chou, K. C., Ippi-esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into pseaac, J. Theor. Biol., 377, 47-56, (2015)
[50] Jia, J. H.; Liu, Z.; Xiao, X.; Liu, B. X.; Chou, K. C., Psuc-lys: predict lysine succinylation sites in proteins with pseaac and ensemble random forest approach, J. Theor. Biol., 394, 223-230, (2016) · Zbl 1343.92153
[51] Jia, J. H.; Zhang, L. X.; Liu, Z.; Xiao, X.; Chou, K. C., Psumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general pseaac, Bioinformatics, 32, 3133-3141, (2016)
[52] Jia, J. H.; Liu, Z.; Xiao, X.; Liu, B. X.; Chou, K. C., Icar-psecp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general pseaac, Oncotarget, 7, 34558-34570, (2016)
[53] Jia, J. H.; Liu, Z.; Xiao, X.; Liu, B. X.; Chou, K. C., Isuc-pseopt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset, Anal. Biochem., 497, 48-56, (2016)
[54] Jia, J. H.; Liu, Z.; Xiao, X.; Liu, B. X.; Chou, K. C., Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition, J. Biomol. Struct. Dyn., 34, 1946-1961, (2016)
[55] Ju, Z.; Wang, S. Y., Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou’s general pseudo amino acid composition, Gene, 664, 78-83, (2018)
[56] Kaczorowski, G. J.; McManus, O. B.; Priest, B. T.; Garcia, M. L., Ion channels as drug targets: the next gpcrs, J. Gen. Physiol., 131, 399, (2008)
[57] Kandaswamy, K. K.; Chou, K. C.; Martinetz, T.; Möller, S.; Suganthan, P. N.; Sridharan, S.; Pugalenthi, G., AFP-pred: a random forest approach for predicting antifreeze proteins from sequence-derived properties, J. Theor. Biol., 270, 56-62, (2011)
[58] Khan, Y. D.; Rasool, N.; Hussain, W.; Khan, S. A.; Chou, K. C., Iphost-pseaac: identify phosphothreonine sites by incorporating sequence statistical moments into pseaac, Anal. Biochem., 550, 109-116, (2018)
[59] Kruskal, W. H.; Wallis, W. A., Use of ranks in one-criterion variance analysis, J. Am. Stat. Assoc., 47, 583-621, (1952) · Zbl 0048.11703
[60] Lee, S. Y.; MacKinnon, R., A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom, Nature, 430, 232-235, (2004)
[61] Lin, H.; Deng, E. Z.; Ding, H.; Chen, W.; Chou, K. C., Ipro54-pseknc: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition, Nucl. Acids Res, 42, 12961-12972, (2014)
[62] Lin, S. X.; Lapointe, J., Theoretical and experimental biology in one-a symposium in honour of Professor kuo-Chen Chou’s 50th anniversary and Professor richard giegé’s 40th anniversary of their scientific careers, J. Biomed. Sci., 6, 435-442, (2013)
[63] Lin, W. Z.; Fang, J. A.; Xiao, X.; Chou, K. C., Idna-prot: identification of DNA binding proteins using random forest with grey model, PLoS One, 6, e24756, (2011)
[64] Lin, W. Z.; Fang, J. A.; Xiao, X.; Chou, K. C., Iloc-animal: a multi-label learning classifier for predicting subcellular localization of animal proteins, Mol. Biosyst., 9, 634-644, (2013)
[65] Liu, B.; Long, R.; Chou, K. C., Idhs-EL: identifying dnase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework, Bioinformatics, 32, 2411-2418, (2016)
[66] Liu, B.; Yang, F.; Chou, K. C., 2L-pirna: a two-layer ensemble classifier for identifying piwi-interacting RNAs and their function, Mol. Ther. Nucl. Acids, 7, 267-277, (2017)
[67] Liu, B.; Wu, H.; Chou, K. C., Pse-in-one 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences, Nat. Sci., 09, 67-91, (2017)
[68] Liu, B.; Wang, S. Y.; Long, R.; Chou, K. C., Irspot-EL: identify recombination spots with an ensemble learning approach, Bioinformatics, 33, 35-41, (2017)
[69] Liu, B.; Weng, F.; Huang, D. S.; Chou, K. C., Iro-3wpseknc: identify DNA replication origins by three-window-based pseknc, Bioinformatics, (2018)
[70] Liu, B.; Li, K.; Huang, D. S.; Chou, K. C., Ienhancer-EL: identifying enhancers and their strength with ensemble learning approach, Bioinformatics, (2018)
[71] Liu, B.; Yang, F.; Huang, D. S.; Chou, K. C., Ipromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based pseknc, Bioinformatics, 34, 33-40, (2018)
[72] Liu, B.; Fang, L. Y.; Liu, F.; Wang, X. L.; Chou, K. C., Imirna-psedpc: microrna precursor identification with a pseudo distance-pair composition approach, J. Biomol. Struct. Dyn., 34, 223-235, (2016)
[73] Liu, B.; Fang, L. Y.; Long, R.; Lan, X.; Chou, K. C., Ienhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition, Bioinformatics, 32, 362-369, (2016)
[74] Liu, B.; Fang, L. Y.; Wang, S. Y.; Wang, X. L.; Li, H. T.; Chou, K. C., Identification of microrna precursor with the degenerate k-tuple or kmer strategy, J. Theor. Biol., 385, 153-159, (2015)
[75] Liu, B.; Fang, L. Y.; Liu, F.; Wang, X. L.; Chen, J. J.; Chou, K. C., Identification of real microrna precursors with a pseudo structure status composition approach, PLoS One, 10, (2015)
[76] Liu, B.; Liu, F. L.; Wang, X. L.; Chen, J. J.; Fang, L. Y.; Chou, K. C., Pse-in-one: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences, Nucleic Acids Res, 43, W65-W71, (2015)
[77] Liu, Z.; Xiao, X.; Yu, D. J.; Jia, J.; Qiu, W. R.; Chou, K. C., Prnam-PC: predicting N6-methyladenosine sites in RNA sequences via physical-chemical properties, Anal. Biochem., 497, 60-67, (2016)
[78] Lu, L.; Niu, B.; Zhao, J.; Liu, L.; Lu, W. C.; Liu, X. J.; Li, Y. X.; Cai, Y. D., Galnac-transferase specificity prediction based on feature selection method, Peptides, 30, 359-364, (2009)
[79] Ma, X.; Sun, X., Sequence-based predictor of ATP-binding residues using random forest and mrmr-IFS feature selection, J. Theor. Biol., 360, 59-66, (2014) · Zbl 1343.92014
[80] Min, J. L.; Xiao, X.; Chou, K. C., Iezy-drug: a web server for identifying the interaction between enzymes and drugs in cellular networking, Biomed. Res. Int., 2013, (2013)
[81] Muthu Krishnan, S., Using Chou’s general pseaac to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains, J. Theor. Biol., 445, 62-74, (2018)
[82] Peng, H.; Long, F.; Ding, C., Feature selection based on mutual information: criteria of MAX-dependency, MAX-relevance, and MIN-redundancy, IEEE Trans. Pattern Anal. Mach. Intell., 27, 1226-1238, (2005)
[83] Poulos, J. L.; Jeon, T. J.; Damoiseaux, R.; Gillespie, E. J.; Bradley, K. A.; Schmidt, J. J., Ion channel and toxin measurement using a high throughput lipid membrane platform, Biosens. Bioelectron., 24, 1806-1810, (2009)
[84] Qiu, W. R.; Xiao, X.; Chou, K. C., Irspot-tncpseaac: identify recombination spots with trinucleotide composition and pseudo amino acid components, Int. J. Biol. Sci., 15, 1746-1766, (2014)
[85] Qiu, W. R.; Xiao, X.; Lin, W. Z.; Chou, K. C., Imethyl-pseaac: identification of protein methylation sites via a pseudo amino acid composition approach, Biomed. Res. Int., 2014, (2014)
[86] Qiu, W. R.; Xiao, X.; Lin, W. Z.; Chou, K. C., Iubiq-lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model, J. Biomol. Struct. Dyn., 33, 1731-1742, (2015)
[87] Qiu, W. R.; Xiao, X.; Xu, Z. C.; Chou, K. C., Iphos-pseen: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier, Oncotarget, 7, 51270-51283, (2016)
[88] Qiu, W. R.; Sun, B. Q.; Xiao, X.; Xu, Z. C.; Chou, K. C., Iptm-mlys: identifying multiple lysine PTM sites and their different types, Bioinformatics, 32, 3116-3123, (2016)
[89] Qiu, W. R.; Sun, B. Q.; Xiao, X.; Xu, Z. C.; Chou, K. C., Ihyd-psecp: identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general pseaac, Oncotarget, 7, 44310-44321, (2016)
[90] Qiu, W. R.; Jiang, S. Y.; Xu, Z. C.; Xiao, X.; Chou, K. C., Irnam5C-psednc: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition, Oncotarget, 8, 41178-41188, (2017)
[91] Qiu, W. R.; Sun, B. Q.; Xiao, X.; Xu, D.; Chou, K. C., Iphos-pseevo: identifying human phosphorylated proteins by incorporating evolutionary information into general pseaac via grey system theory, Mol. Inform, 36, (2017)
[92] Qiu, W. R.; Sun, B. Q.; Xiao, X.; Xu, Z. C.; Jia, J. H.; Chou, K. C., Ikcr-pseens: identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier, Genomics, (2017)
[93] Qiu, W. Y.; Li, S.; Cui, X. W.; Yu, Z. M.; Wang, M. H.; Du, J. W.; Peng, Y. J.; Yu, B., Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou’s pseudo-amino acid composition, J. Theor. Biol., 450, 86-103, (2018) · Zbl 1397.92228
[94] Rahman, M. S.; Shatabda, S.; Saha, S.; Kaykobad, M.; Rahman, M. S., DPP-pseaac: a DNA-binding protein prediction model using Chou’s general pseaac, J. Theor. Biol., 452, 22-34, (2018)
[95] Sabooh, M. F.; Iqbal, N.; Khan, M.; Khan, M.; Maqbool, H. F., Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s pseknc, J. Theor. Biol., 452, 1-9, (2018) · Zbl 1397.92232
[96] Saha, S.; Raghava, G. P., Prediction of neurotoxins based on their function and source, In Silico Biol, 7, 369-387, (2007)
[97] Song, J. N.; Li, F.; Takemoto, K.; Haffari, G.; Akutsu, T.; Chou, K. C.; Webb, G. I., Prevail, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework, J. Theor. Biol., 443, 125-137, (2018)
[98] Song, J. N.; Wang, Y. N.; Li, F. Y.; Akutsu, T.; Rawlings, N. D.; Webb, G. I.; Chou, K. C., Iprot-sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites, Brief. Bioinform., (2018)
[99] Wang, G.; Dunbrack, R. L., PISCES: a protein sequence culling server, Bioinformatics, 19, 1589-1591, (2003)
[100] Xiao, X.; Min, J. L.; Wang, P.; Chou, K. C., Icdi-psefpt: identify the channel-drug interaction in cellular networking with pseaac and molecular fingerprints, J. Theor. Biol., 337, 71-79, (2013)
[101] Xiao, X.; Min, J. L.; Wang, P.; Chou, K. C., Igpcr-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking, PLoS One, 8, e72234, (2013)
[102] Xiao, X.; Wang, P.; Lin, W. Z.; Jia, J. H.; Chou, K. C., Iamp-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types, Anal. Biochem., 436, 168-177, (2013)
[103] Xiao, X.; Ye, H. X.; Liu, Z.; Jia, J. H.; Chou, K. C., Iros-gpseknc: predicting replication origin sites in DNA by incorporating dinucleotide position-specific propensity into general pseudo nucleotide composition, Oncotarget, 7, 34180-34189, (2016)
[104] Xiao, X.; Cheng, X.; Su, S. C.; Mao, Q.; Chou, K. C., Ploc-mgpos: incorporate key gene ontology information into general pseaac for predicting subcellular localization of Gram-positive bacterial proteins, Nat. Sci., 9, 330, (2017)
[105] Xiao, X.; Cheng, X.; Chen, G. Q.; Mao, Q.; Chou, K. C., Ploc-mgpos: predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and pseaac, Genomics, (2018)
[106] Xiao, X.; Min, J. L.; Lin, W. Z.; Liu, Z.; Cheng, X.; Chou, K. C., Idrug-target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach, J. Biomol. Struct. Dyn., 33, 2221-2233, (2015)
[107] Xu, Y.; Ding, J.; Wu, L. Y.; Chou, K. C., Isno-pseaac: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition, PLoS One, 8, e55844, (2013)
[108] Xu, Y.; Shao, X. J.; Wu, L. Y.; Deng, N. Y.; Chou, K. C., Isno-aapair: incorporating amino acid pairwise coupling into pseaac for predicting cysteine S-nitrosylation sites in proteins, PeerJ, 1, e171, (2013)
[109] Yang, H.; Qiu, W. R.; Liu, G. Q.; Guo, F. B.; Chen, W.; Chou, K. C.; Lin, H., Irspot-pse6NC: identifying recombination spots in saccharomyces cerevisiae by incorporating hexamer composition into general pseknc, Int. J. Biol. Sci., 14, 883-891, (2018)
[110] Zhang, C. J.; Tang, H.; Li, W. C.; Lin, H.; Chen, W.; Chou, K. C., Iori-human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition, Oncotarget, 7, 69783-69793, (2016)
[111] Zhang, L. C.; Kong, L., Irspot-PDI: identification of recombination spots by incorporating dinucleotide property diversity information into Chou’s pseudo components, Genomics, (2018)
[112] Zhang, L. C.; Kong, L., Irspot-ADPM: identify recombination spots by incorporating the associated dinucleotide product model into Chou’s pseudo components, J. Theor. Biol., 441, 1-8, (2018)
[113] Zhang, S. L.; Duan, X., Prediction of protein subcellular localization with oversampling approach and Chou’s general pseaac, J. Theor. Biol., 437, 239-250, (2018) · Zbl 1394.92047
[114] Zheng, L. L.; Niu, S.; Hao, P.; Feng, K. Y.; Cai, Y. D.; Li, Y. X., Prediction of protein modification sites of pyrrolidone carboxylic acid using mrmr feature selection and analysis, PLoS One, 6, e28221, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.