A descriptive definition of the Itô-Henstock integral for the operator-valued stochastic process. (English) Zbl 1406.60099

Summary: In this paper, we formulate a version of Fundamental Theorem for the Itô-Henstock integral of an operator-valued stochastic process with respect to a Hilbert space-valued Wiener process. This theorem will give a descriptive definition of the Itô-Henstock integral for the operator-valued stochastic process.


60H30 Applications of stochastic analysis (to PDEs, etc.)
60H05 Stochastic integrals
Full Text: DOI Euclid Link


[1] T. S. Chew, T. L. Toh, and J. Y. Tay, The non-uniform Riemann approach to It \(\hat{\text{o}} \)’s integral, Real Anal. Exchange 27 (2002/03), 495-514. · Zbl 1067.60025
[2] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge, 1992. · Zbl 0761.60052
[3] L. Gawarecki and V. Mandrekar, Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations, Springer, Berlin, 2011. · Zbl 1228.60002
[4] S. Ghahramani, Fundamentals of probability with stochastic processes (3rd edn), Prentice-Hall, New Jersey, 2005. · Zbl 1396.60001
[5] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, American Mathematical Society, 1994. · Zbl 0807.26004
[6] R. Henstock, Lectures on the theory of integration, World Scientific, Singapore, 1988. · Zbl 0668.28001
[7] J. Kurzweil, Henstock-Kurzweil Integration: Its relation to topological vector spaces, Series in Real Analysis, 7. World Scientific Publishing, River Edge, NJ, 2000. · Zbl 0954.28001
[8] M. Labendia and J. Benitez, Convergence theorems for the Itô-Henstock integrable operator-valued stochastic process, Malaysian J. Math. Sci. (to appear). · Zbl 1458.60064
[9] M. Labendia, E. De Lara-Tuprio, and T. R. Teng, Itô-Henstock integral and Itô’s formula for the operator-valued stochastic process, Math. Bohem. 143 (2018), 135-160. · Zbl 1463.60089
[10] P. Y. Lee, Lanzhou lectures on Henstock integration, World Scientific, Singapore, 1989. · Zbl 0699.26004
[11] P. Y. Lee and R. Výborný, The integral: An easy approach after Kurzwiel and Henstock, Cambridge University Press, Cambridge, 2000. · Zbl 0941.26003
[12] T. Y. Lee, Henstock-Kurzweil integration on Euclidean spaces, World Scientific, Singapore, 2011. · Zbl 1246.26002
[13] E. J. McShane, Stochastic integrals and stochastic functional equations, SIAM J. Appl. Math. 17 (1969), 287-306. · Zbl 0182.51001
[14] T. Mikosch, Elementary stochastic calculus with finance in view, World Scientific, Singapore, 1998. · Zbl 0934.60002
[15] Z. R. Pop-Stojanovic, On McShane’s belated stochastic integral, SIAM J. Appl. Math. 22 (1972), 87-92. · Zbl 0243.60035
[16] C. Prévôt and M. Röckner, A concise course on stochastic partial differential equations, Lecture Notes in Mathematics, 1905. Springer, Berlin, 2007. · Zbl 1123.60001
[17] M. Reed and B. Simon, Methods of modern mathematical physics I: Functional analysis, Academic Press, London, 1980. · Zbl 0459.46001
[18] M. Riedle, Cylindrical Wiener processes, in Séminaire de Probabilités XLIII, 191-214, Lecture Notes in Math., 2006, Springer, Berlin, 2011. · Zbl 1228.60049
[19] T. L. Toh and T. S. Chew, The Riemann approach to stochastic integration using non-uniform meshes, J. Math. Anal. Appl. 280 (2003), 133-147. · Zbl 1022.60055
[20] T. L. Toh and T. S. Chew, On the Henstock-Fubini theorem for multiple stochastic integrals, Real Anal. Exchange 30 (2004/05), no. 1, 295-310. · Zbl 1068.60076
[21] S. R. S. Varadhan, Probability theory, Courant Lecture Notes in Mathematics, 7. · Zbl 0980.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.