zbMATH — the first resource for mathematics

Random drift particle swarm optimisation algorithm for highly flexible protein-ligand docking. (English) Zbl 1406.92181
Summary: Molecular docking has emerged as an important tool in drug design and development. Currently, there is a relatively large and ever-increasing number of molecular docking programs. However, despite the great advances in the docking technique over the last decade, most methods cannot be used to dock highly flexible ligands successfully. In this study, based on the Autodock software, a new search algorithm, hybrid algorithm of random drift particle swarm optimisation and local search (LRDPSO), that focuses on protein-ligand applications was presented. In our approach, we considered the ligand flexibility and strategies that aimed to improve binding affinity prediction in the context of a docking-based investigation. The experimental results revealed that our approach led to a substantially lower docking energy and higher docking precision in comparison to the LGA, PSO and QPSO algorithms. The LRDPSO algorithm was able to identify the correct binding mode of 83.6% of the complexes. In comparison, the accuracy of QPSO, PSO and LGA is 73.1%, 68.7% and 68.7%, respectively. For LRDPSO docking, satisfactory docking results can be obtained when relatively big ligands with many rotatable bonds are docked against protein binding pockets in which flexibility does play an important role. Thus, the novel LRDPSO algorithm predictions for highly flexible ligands are more reliable, and would increase the predictive power and widen the applications of this important computational tool.
Reviewer: Reviewer (Berlin)
92C40 Biochemistry, molecular biology
68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)
90C59 Approximation methods and heuristics in mathematical programming
92-04 Software, source code, etc. for problems pertaining to biology
Full Text: DOI
[1] Atilgan, E.; Hu, J., Efficient protein-ligand docking using sustainable evolutionary algorithm, (Proceeding of International Conference on Hybrid Intelligent Systems, (2010)), 113-118
[2] Bazgier, V.; Berka, K.; Otyepka, M.; Banáš, P., Exponential repulsion improves structural predictability of molecular docking, J. Comput. Chem., 37, 2485-2494, (2016)
[3] Chen, H. M.; Liu, B. F.; Huang, H. L.; Hwang, S. F.; Ho, S. Y., SODOCK: swarm optimization for highly flexible protein-ligand docking, J. Comput. Chem., 28, 612-623, (2008)
[4] Chung, J. Y.; Cho, S. J.; Hah, J. M., A python-based docking program utilizing a receptor bound ligand shape: pythdock, Arch. Pharmacol. Res., 34, 1451-1458, (2011)
[5] Chung, H. W.; Cho, S. J.; Lee, K. R.; Lee, K. H., Self-adaptive differential evolution algorithm incorporating local search for protein-ligand docking, J. Phys.: Conf. Ser., 410, 283-307, (2013)
[6] Clerc, M.; Kennedy, J., The particle swarm-explosion, stability and convergence in a multidimensional complex space, IEEE T. Evolut. Comput., 6, 58-73, (2002)
[7] Di Muzio, E.; Toti, D.; Polticelli, F., Dockingapp: a user friendly interface for facilitated docking simulations with autodock vina, J. Comput. Aided Mol. Des., 31, 213-218, (2017)
[8] Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J., Glide: A new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy, J. Med. Chem., 47, 1739-1749, (2004)
[9] Gardiner, E. J.; Willett, P.; Artymiuk, P. J., Protein docking using a genetic algorithm, Proteins, 44, 44-56, (2001)
[10] Grosdidier, A.; Zoete, V.; Michielin, O., Eadock: docking of small molecules into protein active sites with a multiobjective evolutionary optimization, Proteins., 67, 1010-1025, (2007)
[11] Gu, J.; Yang, X.; Kang, L.; Wu, J.; Wang, X., Modock: A multi-objective strategy improves the accuracy for molecular docking, Algorithms Mol. Biol., 10, 8, (2015)
[12] Guedes, I. A.; Magalhães, C. S.D.; Dardenne, L. E., Receptor-ligand molecular docking, Biophys. Rev., 6, 75-87, (2014)
[13] Guo, L.; Yan, Z.; Zheng, X.; Hu, L.; Yang, Y.; Wang, J., A comparison of various optimization algorithms of protein-ligand docking programs by fitness accuracy, J. Mol. Model., 20, 2251-2261, (2014)
[14] Heo, L.; Shin, W. H.; Lee, M. S.; Seok, C., Galaxysite: ligand-binding-site prediction by using molecular docking, Nucleic Acids Res., 42, 210-214, (2014)
[15] Holland, J. H., Adaptation in natural and artificial systems, (1975), University of Michigan Press Ann Arbor, MI
[16] Janson, S.; Merkle, D.; Middendorf, M., Molecular docking with multi-objective particle swarm optimization, Appl. Soft. Comput., 8, 666-675, (2008)
[17] Jones, G.; Willett, P.; Glen, RC; Leach, AR; Taylor, R., Development and validation of a genetic algorithm for flexible docking, J. Mol. Biol., 267, 727-748, (1997)
[18] Kennedy, J.; Eberhart, R., Particle swarm optimization, (Proceedings of IEEE International Conference on Neural Networks, 4, (1995)), 1942-1948
[19] Koohi-Moghadam, M.; Rahmani, A. T., Molecular docking with opposition-based differential evolution, (Proceedings of the 27th Annual ACM Symposium on Applied Computing, (2012)), 1387-1392
[20] Kramer, B.; Rarey, M.; Lengauer, T., Evaluation of the flexx incremental construction algorithm for protein-ligand docking, Proteins, 37, 228-241, (1999)
[21] López-Camacho, E.; García Godoy, M. J.; Nebro, A. J.; Aldana-Montes, J. F., Jmetalcpp: optimizing molecular docking problems with a C++ metaheuristic framework, Bioinformatics, 30, 437-438, (2014)
[22] López-Camacho, E.; García Godoy, M. J.; García-Nieto, J.; Nebro, A. J.; Aldana-Montes, J. F., Solving molecular flexible docking problems with metaheuristics: a comparative study, Appl. Soft. Comput., 28, 379-393, (2015)
[23] Lang, P. T.; Brozell, S. R.; Mukherjee, S.; Pettersen, E. F.; Meng, E. C.; Thomas, V.; Rizzo, R. C.; Case, D. A.; James, T. L.; Kuntz, I. D., DOCK 6: combining techniques to model RNA-small molecule complexes, RNA, 15, 1219-1230, (2009)
[24] Liu, Y.; Zhao, L.; Li, W.; Zhao, D.; Song, M.; Yang, Y., Fipsdock: a new molecular docking technique driven by fully informed swarm optimization algorithm, J. Comput. Chem., 34, 67-75, (2013)
[25] Meier, R.; Pippel, M.; Brandt, F.; Sippl, W.; Baldauf, C., Paradocks: a framework for molecular docking with population-based metaheuristics, J. Chem. Inf. Model., 50, 879-889, (2010)
[26] Morris, G. M.; Goodsell, D. S.; Halliday, R. S., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem., 19, 1639-1662, (1998)
[27] Namasivayam, V.; Gunther, R., PSO@AUTODOCK: A fast flexible molecular docking program based on swarm intelligence, Chem. Biol. Drug Des., 70, 475-484, (2007)
[28] Nicolotti, O.; Giangreco, I.; Introcaso, A.; Leonetti, F.; Stefanachi, A.; Carotti, A., Strategies of multi-objective optimization in drug discovery and development, Expert Opin. Drug Discov., 6, 871-884, (2011)
[29] Pereira, J. C.; Caffarena, E. R.; Dos Santos, C. N., Boosting docking-based virtual screening with deep learning, J. Chem. Inf. Model., 56, 2495-2506, (2016)
[30] Sandoval-Perez, A.; Becerra, D.; Vanegas, D.; Restrepo-Montoya, D.; Nino, F., A multi-objective optimization energy approach to predict the ligand conformation in a docking process, (European Conference on Genetic Programming, (2013)), 181-192
[31] Sanner, M. F., Python: a programming language for software integration and development, J. Mol. Graph. Model., 17, 57-61, (1999)
[32] Shin, W. H.; Kim, J. K.; Kim, D. S.; Seok, C., Galaxydock2: protein-ligand docking using beta-complex and global optimization, J. Comput. Chem., 34, 2647-2656, (2013)
[33] Simonsen, M.; Pedersen, C. N.S.; Christensen, M. H., GPU-accelerated high-accuracy molecular docking using guided differential evolution: real world applications, (Proceedings of the 13th annual conference on Genetic and evolutionary computation, 7105, (2011)), 1803-1810, GECCO 2011
[34] Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E. W., Computational methods in drug discovery, Pharmacol. Rev., 66, 334-395, (2014)
[35] Solis, F. J.; Wets, R. J.B., Minimization by random search techniques, Math. Oper. Res., 6, 19-30, (1981) · Zbl 0502.90070
[36] Sousa, S. F.; Cerqueira, N. M.; Fernandes, P. A.; Ramos, M. J., Virtual screening in drug design and development, Comb. Chem. High Throughput Screen., 13, 442-453, (2010)
[37] Sun, J.; Wu, X.; Palade, V.; Fang, W.; Shi, Y. H., Random drift particle swarm optimization algorithm: convergence analysis and parameter selection, Mach. Learn., 101, 345-376, (2015) · Zbl 1343.68224
[38] Yuriev, E.; Holien, J.; Ramsland, P. A., Improvements, trends, and new ideas in molecular docking: 2012-2013 in review,, J. Mol. Recognit., 28, 581-604, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.