×

zbMATH — the first resource for mathematics

Volume minimization and conformally Kähler, Einstein-Maxwell geometry. (English) Zbl 1410.53071
In this technical article, the authors construct so-called conformally Kähler Einstein-Maxwell metrics on compact manifolds by finding the critical points of a certain volume functional.
More precisely, let \((M,g)\) be a compact Kähler manifold with its induced almost complex tensor field \(J\). Then, a \(J\)-Hermitian manifold \((M,\tilde{g})\) is called a conformally Kähler Einstein-Maxwell (cKEM) manifold if (i) there exists a positive smooth function \(f\) on \(M\) such that \(g=f^2\tilde{g}\); (ii) the Hamiltonian vector field \(K:=J\mathrm{grad}_gf\) is Killing for both \(g\) and \(\tilde{g}\); (iii) the scalar curvature of \(\tilde{g}\) is constant. (Regarding terminology, one can demonstrate that in four dimensions, out of a cKEM manifold one can obtain a solution of the Riemannian Einstein-Maxwell equations.) Let \(G\subset \mathrm{Aut}_r(M,g)\) be a compact subgroup of the group of reduced automorphisms of \((M,g)\), with Lie algebra \({\mathfrak g}\). Then, to every pair \((K,a)\in {\mathfrak g}\times{\mathbb R}\) one can construct a certain metric \(\tilde{g}_{K,a}\) on \(M\) and an associated functional on \({\mathfrak g}\times{\mathbb R}\) given by \((K,a)\mapsto \mathrm{Vol}(M, \tilde{g}_{K,a})\). The main result of the paper is that cKEM metrics are critical points of this functional and a point \((K,a)\) is a critical point if and only if its so-called cKEM-Futaki invariant vanishes (see Theorem 1.1 and Section 1 for further explanations).
Section 2 contains the proof of the main result while Sections 3 and 4 are devoted to explicit examples of non-Kähler cKEM metrics and some computations with them.

MSC:
53C55 Global differential geometry of Hermitian and Kählerian manifolds
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] V. Apostolov, D. M. J. Calderbank and P. Gauduchon, Ambitoric geometry I: Einstein metrics and extremal ambikähler structures, J. Reine Angew. Math., 721 (2016), 109–147. · Zbl 1355.32018
[2] V. Apostolov, D. M. J. Calderbank and P. Gauduchon, Ambitoric geometry II: extremal toric surfaces and Einstein 4-orbifolds, Ann. Sci. Éc. Norm. Supér. (4), 48 (2015), 1075–1112. · Zbl 1346.32007
[3] A. Besse, Einstein manifolds, Springer-Verlag, Berlin-Heidelberg-Tokyo, 1987. · Zbl 0613.53001
[4] C. P. Boyer, K. Galicki and S. R. Simanca Canonical Sasakian metrics, Comm. Math. Phys., 279 (2008), 705–733. · Zbl 1142.53036
[5] X.-X. Chen, C. LeBrun and B. Weber, On conformally Kähler, Einstein manifolds, J. Amer. Math. Soc., 21 (2008), 1137–1168. · Zbl 1208.53072
[6] K. Cho, A. Futaki and H. Ono, Uniqueness and examples of toric Sasaki–Einstein metrics, Comm. Math. Phys., 277 (2008), 439–458. · Zbl 1144.53058
[7] S. K. Donaldson, Remarks on gauge theory, complex geometry and 4-manifold topology: In ‘Fields Medallists Lectures’, World Sci. Ser. 20th Century Math., 5, World Sci. Publ., River Edeg, NJ, 1997, 384–403.
[8] S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geometry, 62 (2002), 289–349. · Zbl 1074.53059
[9] S. K. Donaldson, Constant scalar curvature metrics on toric surfaces, Geom. Funct. Anal., 19 (2009), 83–136. · Zbl 1177.53067
[10] A. Fujiki, Moduli space of polarized algebraic manifolds and Kähler metrics, Sugaku Expositions, 5 (1992), 173–191. · Zbl 0796.32009
[11] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math., 73 (1983), 437–443. · Zbl 0506.53030
[12] A. Futaki, On compact Kähler manifolds of constant scalar curvature, Proc. Japan Acad., Ser. A, 59 (1983), 401–402. · Zbl 0539.53048
[13] A. Futaki and H. Ono, Einstein metrics and GIT stability, Sugaku Expositions, 24 (2011), 93–122. (Translated from Sugaku, 60 (2008), 175–202 in Japanese.)
[14] A. Futaki, H. Ono and G. Wang, Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds, J. Differential Geom., 83 (2009), 585–635. · Zbl 1188.53042
[15] C. Koca and C. W. Tønnesen-Friedman, Strongly Hermitian Einstein–Maxwell solutions on ruled surfaces, Ann. Glob. Annl. Geom., 50 (2016), 29–46. · Zbl 1347.53057
[16] C. LeBrun, On Einstein, Hermitian 4-manifolds, J. Differential Geom., 90 (2012), 277–302. · Zbl 1254.53076
[17] C. LeBrun, The Einstein–Maxwell equations, Kähler metrics, and Hermitian geometry, J. Geom. Phys., 91 (2015), 163–171. · Zbl 1318.53033
[18] C. LeBrun, The Einstein–Maxwell equations and conformally Kähler geometry, Commun. Math. Phys., 344 (2016), 621–653. · Zbl 1343.53074
[19] E. Legendre, Toric geometry of convex quadrilaterals, J. Symplectic Geom., 9 (2011), 343–385. · Zbl 1233.14032
[20] D. Martelli, J. Sparks and S.-T. Yau, Sasaki–Einstein manifolds and volume minimisation, Comm. Math. Phys., 280 (2008), 611–673. · Zbl 1161.53029
[21] D. Page, A compact rotating gravitational instanton, Phys. Lett. B, 79 (1978), 235–238.
[22] J. Sparks, Sasaki–Einstein manifolds, Surveys in differential geometry, XVI, Geometry of special holonomy and related topics, Surv. Differ. Geom., 16, Int. Press, Somerville, MA, 2011, 265–324. · Zbl 1256.53037
[23] G. Tian and X.-H. Zhu, A new holomorphic invariant and uniqueness of Kähler–Ricci solitons, Comment. Math. Helv., 77 (2002), 297–325. · Zbl 1036.53053
[24] X.-J. Wang and X. Zhu, Kähler–Ricci solitons on toric manifolds with positive first Chern class, Adv. Math., 188 (2004), 87–103. · Zbl 1086.53067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.