×

zbMATH — the first resource for mathematics

On Maxwell equations with the Preisach hysteresis operator: The one- dimensional time-periodic case. (English) Zbl 0701.35098
Two energy functionals for the Preisach hysteresis operator are used for proving the existence of weak periodic solutions of the one-dimensional system of Maxwell equations with hysteresis under periodic forcing. In terms of the geometry of the hysteresis loops, these two functionals correspond to their area and curvature, respectively. In this model, the speed of propagation of waves does not exceed the velocity of light.
Reviewer: P.Krejčí

MSC:
35L60 First-order nonlinear hyperbolic equations
35B10 Periodic solutions to PDEs
35D05 Existence of generalized solutions of PDE (MSC2000)
35Q60 PDEs in connection with optics and electromagnetic theory
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] А. И. Ахиезер И. А. Ахиезер: Электромагнетизм и электромагнитные волны. Высшая школа, Москва, 1985. · Zbl 1223.81132 · doi:10.1016/0550-3213(85)90278-0
[2] М. А. Красносельский А. В. Покровский: Системы с гистерезисом. Hauka, Москва, 1983. · Zbl 1229.47001
[3] P. Krejčí: Hysteresis and periodic solutions to semilinear and quasilinear wave equations. Math. Z. 193, 247-264 (1986). · Zbl 0658.35065 · doi:10.1007/BF01174335 · eudml:173782
[4] P. Krejčí: On Ishlinskii’s model for non-perfectly elastic bodies. Apl. mat. 33(1988), 133-144. · Zbl 0653.73013
[5] P. Krejčí: A monotonicity method for solving hyperbolic problems with hysteresis. Apl. mat. 33 (1988), 197-203. · Zbl 0668.35065 · eudml:15537
[6] P. Krejčí: Quasilinear wave equation with hysteresis: an initial-boundary-value problem. To appear.
[7] A. Visintin: On the Preisach model for hysteresis. Nonlinear Anal. T.M.A. 8, 977-996 (1984). · Zbl 0563.35007 · doi:10.1016/0362-546X(84)90094-4
[8] A. Visintin A. Damlamian: Une généralisation vectorielle du modèle de Preisach pour l’hystérésis. C.R. Acad. Sc. Paris 297, sér. I, 437-440 (1983). · Zbl 0546.35068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.