Distances and discrimination rates for stochastic processes. (English) Zbl 0701.62084

Summary: We consider Rényi distances which are representing Hellinger integrals and Kullback-Leibler divergences. Basic functional properties are established for these and other convex distances. We evaluate Rényi distances for distributions of regular Markov processes. They are shown to be proportional to Fisher informations of corresponding Markov kernels. Rate of discrimination between two regular Markov processes is investigated using the Rényi distances. In particular, asymptotic formulas are established for the second kind error of Neyman-Pearson tests, and for the mixed error of Bayes tests.


62M02 Markov processes: hypothesis testing
62F05 Asymptotic properties of parametric tests
62F15 Bayesian inference
62B10 Statistical aspects of information-theoretic topics
Full Text: DOI


[1] Bhattacharyya, A., On some analogues to the amount of information and their uses in statistical estimation, Sankhyā, 8, 1-14 (1946)
[2] Feller, W., An Introduction to Probability Theory and Applications, II (1966), Wiley: Wiley New York · Zbl 0138.10207
[3] Hahn, O., Über die Integrale des Herrn Hellinger und die Orthogonalinvarianten der quadratischen Formen von unendlichen vielen Veränderlichen, Monatsh. Math. Phys., 23, 161-224 (1912)
[4] Hellinger, E., Neue Begründungen der Theorie quadratischen Formen von unendlichen Veränderlichen, J. Reine Angew. Math., 136, 210-271 (1909)
[5] Kolomietz, E. I., Asymptotic behaviour of type II errors for the Neyman-Pearson test, Teor. Verojatnost. i primenen., 33, 503-522 (1984), [In Russian.]
[6] Kullback, S.; Keegel, J. C.; Kullback, J. H., Topics in Statistical Information Theory (1987), Springer: Springer Berlin · Zbl 0632.62003
[7] Liese, F.; Vajda, I., Convex Statistical Distances (1987), Teubner: Teubner Leipzig · Zbl 0656.62004
[8] Linkov, Yu. N., On asymptotic power of statistical criteria for processes of diffusion type, Teor. Sluc. Process., 9, 61-71 (1981), [In Russian.] · Zbl 0481.62065
[9] Memin, J.; Shiryayev, A. N., Distance de Hellinger-Kakutani des lois correspondant a accroissements independants, Z. Wahrsch. Verw. Gebiete, 70, 67-89 (1985) · Zbl 0569.60038
[10] Newman, C. M.; Stuck, B. W., Chernoff bounds for discriminating between two Markov processes, Stochastics, 2, 139-153 (1979) · Zbl 0408.62070
[11] Rényi, A., On measures of entropy and information, (Proc. 4th Berkeley Symp. on Probab. Theory Math. Statist., Vol. 1 (1961), Univ. of California Press: Univ. of California Press Berkeley, CA), 447-561 · Zbl 0106.33001
[12] Vajda, I., Theory of Statistical Inference and Information (1989), Kluwer: Kluwer Dordrecht-Boston · Zbl 0711.62002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.