×

zbMATH — the first resource for mathematics

Pour en finir avec la dérécursivation du problème des tours de Hanoï. (French) Zbl 0701.68039
Summary: We discuss in a detailed way how to develop the classical Towers of Hanoï problem in a nonrecursive form, and we give a new and fundamental formula of recurrence which allows us to rediscover the known iterative properties and to propose a very simple principle of iterative solution. Finally, we observe that, for this Towers of Hanoï problem, the iteration preserves something of the recursion and thus this problem appears indeed of fundamentally recursive nature.
MSC:
68W10 Parallel algorithms in computer science
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] 1. J. ARSAC, La construction des programmes structurés, Dunod Informatique, 1977. Zbl0451.68014 · Zbl 0451.68014
[2] 2. J. ARSAC, Les bases de la programmation structurée, Dunod Informatique, 1983. Zbl0624.68004 · Zbl 0624.68004
[3] 3. P. BUNEMAN et L. LEVY, The Towers of Hanoï Problem, Information Processing letters, vol. 10, 1980, p. 243-244. Zbl0439.05010 MR585392 · Zbl 0439.05010 · doi:10.1016/0020-0190(80)90150-7
[4] 4. M. C. ER, A Representation Approach to the Tower of Hanoï Problem, The Computer Journal, vol. 25, 1982, p. 442-447. Zbl0493.90100 · Zbl 0493.90100 · doi:10.1093/comjnl/25.4.442
[5] 5. J. HARDOUIN DUPARC, Génération de mots à définition récursive par des piles d’automates, preprint, 1985.
[6] 6. P. J. HAYES, Discussion and Correspondence. A Note on the Towers of Hanoï Problem, The Computer Journal, 1977, p. 282-285. Zbl0362.68057 · Zbl 0362.68057 · doi:10.1093/comjnl/20.3.282
[7] 7. I. LAVALLÉE, Note sur le problème des Tours de Hanoï, Rev. Roumaine Math. pures appl., vol. 30, 1985, p. 433-438. Zbl0577.05010 MR802766 · Zbl 0577.05010
[8] 8. B. MEYER et C. BAUDOIN, Méthodes de programmation, 3e éd., Eyrolles, 1984. Zbl0407.68002 · Zbl 0407.68002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.