×

Sur les codes zigzag et leur décidabilité. (Zigzag codes and their decidability). (French) Zbl 0701.68057

Summary: This paper deals with zigzag factorizations and zigzag codes. The language of “zigzag” over a regular language is represented by constructing a special family of two-way automata. Decidability of zigzag codes, previously shown for the finite languages, is proved here for all regular languages by the analysis of the set of “crossing sequences” produced by a two-way automaton in the family. We also obtain that it is decidable whether or not a two-way automaton of a certain type is non- ambiguous.

MSC:

68Q45 Formal languages and automata
03B25 Decidability of theories and sets of sentences
Full Text: DOI

References:

[1] Anselmo, M., Automates et codes zigzag, Rapport LITP No. 88-74 (Novembre 1988), et à paraitre dans RAIRO Inform. Thér.
[2] Berstel, J.; Perrin, D., Theory of Codes (1985), Academic Press: Academic Press New York · Zbl 1022.94506
[3] Birget, J. C., Concatenations of inputs in a two-way automaton, Theoret. Comput. Sci., 63, 141-156 (1989) · Zbl 0664.68081
[4] Birget, J. C., Two-way auromaton computations, (Technical Report No. 60 (July 1987), Dept. of Computer Science, Univ. of Nebraska: Dept. of Computer Science, Univ. of Nebraska Lincoln), et à paraître dans RAIRO Inform. Théor. · Zbl 1328.68072
[5] Eilenberg, S., Automata, Languages and Machines, Vol. A (1974), Academic Press: Academic Press New York · Zbl 0317.94045
[6] Hopcroft, J. E.; Ullman, J. D., Introduction to Automata Theory, Languages and Computation (1979), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0196.01701
[7] Howie, J. M., An Introduction to Semigroup Theory (1976), Academic Press: Academic Press New York · Zbl 0355.20056
[8] Pécuchet, J. P., Automates buostrophédons, langages reconnaissables de mots infinis et variétés de semigroupes, Thése d’Etat. Thése d’Etat, Automates buostrophédons, semi-groupe de Birget et monoide inversif libre. Thése d’Etat. Thése d’Etat, Automates buostrophédons, semi-groupe de Birget et monoide inversif libre, RAIRO Inform. Théor., 19, 17-100 (1985), LITP · Zbl 0604.68094
[9] Moore, E. F., Sequential Machines: Selected Papers (1964), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0147.24107
[10] Moore, E. F., Sequential Machines: Selected Papers (1964), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0147.24107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.