zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Environmental periodicity and time delays in a “food-limited” population model. (English) Zbl 0701.92021
Summary: Sufficient conditions are obtained for the existence of a globally attracting positive periodic solution of the food-limited population system modelled by the equation $$ \dot N(t)=r(t)((K(t)-N(t- m\omega))/(K(t)+c(t)r(t)N(t-m\omega))), $$ where m is a nonnegative integer and K,r,c are continuous, positive, periodic functions of period $\omega$.

34C25Periodic solutions of ODE
34K99Functional-differential equations
92D25Population dynamics (general)
Full Text: DOI
[1] Arrigoni, M.; Steiner, A.: Logistic growth in a fluctuating environment. J. math. Biol. 21, 237-241 (1985) · Zbl 0563.92014
[2] Barbalat, I.: Systémes d’équations différentielles d’oscillations nonlinéares. Rev. roumaine math. Pures appl. 4, 267-270 (1959)
[3] Boyce, M. S.; Daley, D. J.: Population tracking of fluctuating environments and natural selection for tracking ability. Amer. natur. 115, 480-491 (1980)
[4] Coleman, B. D.: Nonautonomous logistic equations as models of the adjustment of populations to environmental change. Math. biosci. 45, 159-173 (1979) · Zbl 0425.92013
[5] Coleman, B. D.; Hsieh, Y. H.; Knowles, G. P.: On the optimal choice of r for a population in a periodic environment. Math. biosci. 46, 71-85 (1979) · Zbl 0429.92022
[6] Emmel, T. C.: Population biology. (1976)
[7] Fleming, T. H.; Hooker, R. S.: Anolis cupreus: the response of a lizard to tropical seasonality. Ecology 56, 1243-1261 (1975)
[8] Fretwell, S. D.: Populations in a seasonal environment. (1972)
[9] Gopalsamy, K.; Kulenović, M. R. S.; Ladas, G.: Time lags in a ”food-limited” population model. Appl. anal. 31, 225-237 (1988) · Zbl 0639.34070
[10] Hallam, T. G.; Deluna, J. T.: Effects of toxicants on populations: A qualitative approach III. Environmental and food chain pathways. J. theor. Biol. 109, 411-429 (1984)
[11] Nicholson, A. J.: An outline of the dynamics of animal populations. Austral. J. Zool. 2, 9-65 (1954)
[12] Nisbet, R. M.; Gurney, W. S. C.: Population dynamics in a periodically varying environment. J. theor. Biol. 56, 459-475 (1976)
[13] Pianka, E. R.: Evolutionary ecology. (1974)
[14] Pielou, E. C.: An introduction to mathematical ecology. (1969) · Zbl 0259.92001
[15] Rosen, G.: Time delays produced by essential nonlinearity in population growth models. Bull. math. Biol. 28, 253-256 (1987) · Zbl 0614.92015
[16] Smith, F. E.: Population dynamics in daphnia magna. Ecology 44, 651-663 (1963)
[17] Sonneveld, P.; Van Kan, J.: On a conjecture about the periodic solution of the logistic equation. J. math. Biol. 8, 285-289 (1979) · Zbl 0412.92019