zbMATH — the first resource for mathematics

Correlation between sequence, structure and function for trisporoid processing proteins in the model zygomycete Mucor mucedo. (English) Zbl 1406.92454
Summary: Terpenoids, steroids, carotenoids, phytoenes and other chemically related substance groups fulfill multiple functions in all realms of the organismic world. This analysis focuses on trisporoids that operate as pheromones in the phylogenetically ancient fungal group of mucoralean zygomycetes. Trisporoids serve as pheromones for recognizing complementary mating partners and for inducing the differentiation program towards sexual spore formation. Trisporoids are synthesized by oxidative degradation of \(\beta\)-carotene. Structurally, they are related to retinoids in mammals and abscisic acid in vascular plants. In order to evaluate evolutionary relationships between proteins involved in trisporoid binding and also for checking possibilities to recognize functionally related proteins by sequence and structure comparisons, we compared representative proteins of different origins. Towards this goal, we calculated three-dimensional structures for 4-dihydromethyltrisporate dehydrogenase (TSP1) and 4-dihydrotrisporin dehydrogenase (TSP2), the two proteins involved in trisporic acid synthesis that have unequivocally been correlated with their catalytic function for the model zygomycete Mucor mucedo. TSP1 is an aldo-keto reductase with a TIM-barrel structure, TSP2 belongs to short-chain dehydrogenases, characterized by a Rossmann fold. Evidently, functional conservation, even implying very similar substrates and identical cosubstrates of enzymes in a single organism, turns out to be essentially independent of basic protein structure. The binding sites for NADP and trisporoid ligands in the proteins were determined by docking studies, revealing those regions affecting substrate specificity. Despite the pronounced differences in amino acid sequence and tertiary structure, the surfaces around the active sites are comparable between TSP1 and TSP2. Two binding regions were identified, one sterically open and a second closed one. In contrast to TSP1, all docking models for TSP2 place the trisporoid into the second, channel-like region.
Reviewer: Reviewer (Berlin)
92D20 Protein sequences, DNA sequences
92C40 Biochemistry, molecular biology
Full Text: DOI
[1] Altschul, S. F.; Madden, T. L.; Schäffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389-3402, (1997)
[2] Burmester, A.; Richter, M.; Schultze, K.; Voelz, K.; Schachtschabel, D.; Boland, W.; Wöstemeyer, J.; Schimek, C., Cleavage of β-carotene as the first step in sexual hormone synthesis in zygomycetes is mediated by a trisporic acid regulated β-carotene oxygenase, Fungal Genet. Biol., 44, 1096-1108, (2007)
[3] Cassetta, A.; Büdefeld, T.; Rizner, T. L.; Kristan, K.; Stojan, J.; Lamba, D., Crystallization, X-ray diffraction analysis and phasing of 17β-hydroxysteroid dehydrogenase from the fungus cochliobolus lunatus, Acta Cryst., 61, 1032-1034, (2005)
[4] Cassetta, A.; Krastanova, I.; Kristan, K.; Švegelj, M. B.; Lamba, D.; Rižner, T. L.; Stojan, J., Insights into subtle conformational differences in the substrate-binding loop of fungal 17β-hydroxysteroid dehydrogenase: a combined structural and kinetic approach, Biochem. J., 441, 151-160, (2012)
[5] Chambon, P., A decade of molecular biology of retinoic acid receptors, FASEB J., 10, 940-954, (1996)
[6] Chandra, V.; Huang, P.; Hamuro, Y.; Raghuram, S.; Wang, Y.; Burris, T. P.; Rastinejad, F., Structure of the intact PPAR-gamma-rxralpha nuclear receptor complex on DNA, Nature, 456, 350-356, (2008)
[7] Cowan, S. W.; Newcomer, M. E.; Jones, T. A., Crystallographic refinement of human serum retinol binding protein at 2å resolution, Proteins, 8, 44-61, (1990)
[8] Czempinski, K., Kruft, V., Wöstemeyer, J., Burmester, A., 1996. 4-Dihydromethyltrisporate dehydrogenase from Mucor mucedo, an enzyme of the sexual hormone pathway: purification, and cloning of the corresponding gene. Microbiology 142, 2647–2654.
[9] Franzoni, L.; Lücke, C.; Pérez, C.; Cavazzini, D.; Rademacher, M.; Ludwig, C.; Spisni, A.; Rossi, G. L.; Rüterjans, H., Structure and backbone dynamics of apo- and holo-cellular retinol-binding protein in solution, J. Biol. Chem., 277, 21983-21997, (2002)
[10] Gudas, L. J.; Wagner, J. A., Retinoids regulate stem cell differentiation, J. Cell. Physiol., 226, 322-330, (2011)
[11] Iyer, L. M.; Koonin, E. V.; Aravind, L., Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily, Proteins, 43, 134-144, (2001)
[12] Jez, J. M.; Bennett, M. J.; Schlegel, B. P.; Lewis, M.; Penning, T. M., Comparative anatomy of the aldo–keto reductase superfamily, Biochem. J., 326, 625-636, (1997)
[13] Kallberg, Y.; Oppermann, U.; Jörnvall, H.; Persson, B., Short-chain dehydrogenases/reductases (SDRs) coenzyme-based functional assignments in completed genomes, Eur. J. Biochem., 269, 4409-4417, (2002)
[14] Kavanagh, K. L.; Jörnvall, H.; Persson, B.; Oppermann, U., The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes, Cell. Mol. Life Sci., 65, 3895-3906, (2008)
[15] Kavanagh, K. L.; Klimacek, M.; Nidetzky, B.; Wilson, D. K., The structure of apo and holo forms of xylose reductase, a dimeric aldo–keto reductase from candida tenuis, Biochem., 41, 8785-8795, (2002)
[16] Kelley, L. A.; Sternberg, M. J., Protein structure prediction on the web: a case study using the phyre server, Nat. Protoc., 4, 363-371, (2009)
[17] Lambert, C.; Léonard, N.; De Bolle, X.; Depiereux, E., Esypred3D: prediction of proteins 3D structures, Bioinformatics, 18, 1250-1256, (2002)
[18] le Maire, A.; Teyssier, C.; Erb, C.; Grimaldi, M.; Alvarez, S.; de Lera, A. R.; Balaguer, P.; Gronemeyer, H.; Royer, C. A.; Germain, P.; Bourguet, W., A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor, Nat. Struct. Mol. Biol., 17, 801-807, (2010)
[19] Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J., Autodock4 and autodocktools4: automated docking with selective receptor flexibility, J. Comput. Chem., 30, 2785-2791, (2009)
[20] Mukherjee, S.; Zhang, Y., Protein–protein complex structure predictions by multimeric threading and template recombination, Structure, 19, 955-966, (2011)
[21] Nishimura, N.; Hitomi, K.; Arvai, A. S.; Rambo, R. P.; Hitomi, C.; Cutler, S. R.; Schroeder, J. I.; Getzoff, E. D., Structural mechanism of abscisic acid binding and signaling by dimeric PYR1, Science, 326, 1373-1379, (2009)
[22] Noy, N., Retinoid-binding proteins: mediators of retinoid action, Biochem. J., 348, 481-495, (2000)
[23] Oppermann, U.; Filling, C.; Hult, M.; Shafqat, N.; Wu, X.; Lindh, M.; Shafqat, J.; Nordling, E.; Kallberg, Y.; Persson, B.; Jörnvall, H., Short-chain dehydrogenases/reductases (SDR): the 2002 update, Chem. Biol. Interact., 143–144, 247-253, (2003)
[24] Petschacher, B.; Leitgeb, S.; Kavanagh, K. L.; Wilson, D. K.; Nidetzky, B., The coenzyme specificity of candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography, Biochem. J., 385, 75-83, (2005)
[25] Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E., UCSF chimera—a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605-1612, (2004)
[26] Pfahl, M.; Chytil, F., Regulation of metabolism by retinoic acid and its nuclear receptors, Annu. Rev. Nutr., 16, 257-283, (1996)
[27] Raghava, G. P.S., Protein secondary structure prediction using nearest neighbor and neural network approach, CASP, 4, 75-76, (2000)
[28] Raghavendra, A. S.; Gonugunta, V. K.; Christmann, A.; Grill, E., ABA perception and signalling, Trends Plant Sci., 15, 395-401, (2010)
[29] Rice, P.; Longden, I.; Bleasby, A., EMBOSS: the European molecular biology open software suite, Trends Genet., 16, 276-277, (2000)
[30] Rosewich, U. L.; Kistler, H. C., Role of horizontal gene transfer in the evolution of fungi, Annu. Rev. Phytopathol., 38, 325-363, (2000)
[31] Rossmann, M. G.; Moras, D.; Olsen, K. W., Chemical and biological evolution of a nucleotide-binding protein, Nature, 250, 194-199, (1974)
[32] Rost, B., Enzyme function less conserved than anticipated, J. Mol. Biol., 318, 2, 595-608, (2002)
[33] Sanner, M. S.; Olson, A. J.; Spehner, J.-C., Reduced surface: an efficient way to compute molecular surfaces, Biopolymers, 38, 305-320, (1996)
[34] Schimek, C.; Kleppe, K.; Saleem, A.-R.; Voigt, K.; Burmester, A.; Wöstemeyer, J., Sexual reactions in mortierellales are mediated by the trisporic acid system, Mycol. Res., 107, 736-747, (2003)
[35] Schimek, C.; Wöstemeyer, J., Carotene derivatives in sexual communication of zygomycete fungi, Phytochemistry, 70, 1867-1875, (2009)
[36] Schimek, C.; Wöstemeyer, J., Pheromone action in the fungal groups chytridiomycota, and zygomycota, and in the oomycota, (Kües, U.; Fischer, R.; Esser, K., The Mycota I: Growth, Differentiation and Sexuality, (2006), Springer Berlin, Heidelberg)
[37] Schultze, K.; Schimek, C.; Wöstemeyer, J.; Burmester, A., Sexuality and parasitism share common regulatory pathways in the fungus parasitella parasitica, Gene, 348, 33-44, (2005)
[38] Seiler, C.; Harshavardhan, V. T.; Rajesh, K.; Reddy, P. S.; Strickert, M.; Rolletschek, H.; Scholz, U.; Wobus, U.; Sreenivasulu, N., ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions, J. Exp. Bot., 62, 2615-2632, (2011)
[39] Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T. J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J. D.; Higgins, D. G., Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega, Mol. Syst. Biol., 7, 539, (2011)
[40] Sutter, R. P.; Grandin, A. B.; Dye, B. D.; Moore, W. R., (–) mating type-specific mutants of phycomyces defective in sex pheromone biosynthesis, Fungal Genet. Biol., 20, 268-279, (1996)
[41] Theodosiou, M.; Laudet, V.; Schubert, M., From carrot to clinic: an overview of the retinoic acid signaling pathway, Cell. Mol. Life Sci., 67, 1423-1445, (2010)
[42] Tian, W.; Skolnick, J., How well is enzyme function conserved as a function of pairwise sequence identity?, J. Mol. Biol., 333, 863-882, (2003)
[43] Van den Ende, H.; Werkman, B. A.; van den Briel, M. L., Trisporic acid synthesis in mated cultures of the fungus blakeslea trispora, Arch. Microbiol., 86, 175-184, (1972)
[44] Wass, M. N.; Kelley, L. A.; Sternberg, M. J., 3dligandsite: predicting ligand-binding sites using similar structures, Nucleic Acids Res., 38, W469-W473, (2010)
[45] Werkman, B. A., Localization and partial characterization of a sex-specific enzyme in homothallic and heterothallic mucorales, Arch. Microbiol., 109, 209-213, (1976)
[46] Werkman, B. A.; van den Ende, H., Trisporic acid synthesis in homothallic and heterothallic mucorales, J. Gen. Microbiol., 82, 273-278, (1974)
[47] Werner, S., Schröter, A., Schimek, C., Vlaic, S., Wöstemeyer, J., Schuster, S. A model of the synthesis of trisporic acid in Mucorales showing bistability. IET Systems Biol. 10.1049/iet-syb.2011.0056, in press.
[48] Wetzel, J.; Scheibner, O.; Burmester, A.; Schimek, C.; Wöstemeyer, J., 4-dihydrotrisporin–dehydrogenase, an enzyme of the sex hormone pathway of mucor mucedo: purification, cloning of the corresponding gene, and developmental expression, Eukaryotic Cell, 8, 88-95, (2009)
[49] Wiederstein, M.; Sippl, M. J., Prosa-web: interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucleic Acids Res., 35, W407-W410, (2007)
[50] Wöstemeyer, J.; Burmester, A.; Wöstemeyer, A.; Schultze, K.; Voigt, K., Gene transfer in the fungal host parasite system absidia glaucaparasitella parasitica depends on infection, (Syvanen, M.; Kado, C. I., Horizontal Gene Transfer, (2002), Academic Press London)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.