×

zbMATH — the first resource for mathematics

QSAR prediction of HIV-1 protease inhibitory activities using docking derived molecular descriptors. (English) Zbl 1406.92178
Summary: In this study, application of a new hybrid docking-quantitative structure activity relationship (QSAR) methodology to model and predict the HIV-1 protease inhibitory activities of a series of newly synthesized chemicals is reported. This hybrid docking-QSAR approach can provide valuable information about the most important chemical and structural features of the ligands that affect their inhibitory activities. Docking studies were used to find the actual conformations of chemicals in active site of HIV-1 protease. Then the molecular descriptors were calculated from these conformations. Multiple linear regression (MLR) and least square support vector machine (LS-SVM) were used as QSAR models, respectively. The obtained results reveal that statistical parameters of the LS-SVM model are better than the MLR model, which indicate that there are some non-linear relations between selected molecular descriptors and anti-HIV activities of interested chemicals. The correlation coefficient \((R)\), root mean square error (RMSE) and average absolute error (AAE) for LS-SVM are: \(R=0.988\), RMSE\(=0.207\) and AAE\(=0.145\) for the training set, and \(R=0.965\), RMSE\(=0.403\) and AAE\(=0.338\) for the test set. Leave one out cross validation test was used for assessment of the predictive power and validity of models which led to cross-validation correlation coefficient QUOTE of 0.864 and 0.850 and standardized predicted relative error sum of squares (SPRESS) of 0.553 and 0.581 for LS-SVM and MLR models, respectively.
Reviewer: Reviewer (Berlin)
MSC:
92C40 Biochemistry, molecular biology
62J99 Linear inference, regression
62P10 Applications of statistics to biology and medical sciences; meta analysis
68T05 Learning and adaptive systems in artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Althaus, I. W.; Chou, J. J.; Gonzales, A. J.; Deibel, M. R.; Chou, K. C.; Kezdy, F. J.; Romero, D. L.; Palmer, J. R.; Thomas, R. C., Kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-88204E, Biochemistry, 32, 6548-6554, (1993)
[2] Althaus, I. W.; Chou, J.; Gonzales, A.; Deibel, M.; Chou, K.; Kezdy, F.; Romero, D.; Aristoff, P.; Tarpley, W.; Reusser, F., Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E, J. Biol. Chem., 268, 6119-6124, (1993)
[3] Althaus, I. W.; Gonzales, A.; Chou, J.; Romero, D.; Deibel, M.; Chou, K.; Kezdy, F.; Resnick, L.; Busso, M.; So, A., The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase, J. Biol. Chem., 268, 14875-14880, (1993)
[4] Althaus, I. W.; Chou, J. J.; Gonzales, A. J.; Deibel, M. R.; Kuo-Chen, C.; Kezdy, F. J.; Romero, D. L.; Thomas, R. C.; Aristoff, P. A.; Tarpley, W. G., Kinetic studies with the non-nucleoside human immunodeficiency virus type-1 reverse transcriptase inhibitor U-90152E, Biochem. Pharmacol., 47, 2017-2028, (1994)
[5] Althaus, I. W.; Chou, K.-C.; Lemay, R. J.; Franks, K. M.; Deibel, M. R.; Kezdy, F. J.; Resnick, L.; Busso, M. E.; So, A. G.; Downey, K. M., The benzylthio-pyrimidine U-31,355, a potent inhibitor of HIV-1 reverse transcriptase, Biochem. Pharmacol., 51, 743-750, (1996)
[6] Andrew, A. M., An introduction to support vector machines and other kernel-based learning methods by nello christianini and John shawe-Taylor, (2000), Cambridge University Press Cambridge, (2000, xiii+ 189 pp., ISBN 0-521-78019-5 (Hbk,£ 27.50). Cambridge Univ Press)
[7] Atkinson, A. C., Plots, transformations, and regression: an introduction to graphical methods of diagnostic regression analysis, (1985), Clarendon Press Oxford · Zbl 0582.62065
[8] Auxiliadora Dea-Ayuela, M.; Pkrez-Castillo, Y.; Meneses-Marcel, A.; Ubeira, F. M.; Bolas-Fernandez, F.; Chou, K.-C.; Gonzalez-Diaz, H., HP-lattice QSAR for dynein proteins: experimental proteomics (2D-electrophoresis, mass spectrometry) and theoretic study of a leishmania infantum sequence, Bioorg. Med. Chem., 16, 7770-7776, (2008)
[9] Chen, Q.; Zhao, J.; Fang, C.; Wang, D., Feasibility study on identification of Green, black and oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM), Spectrochim. Acta, Part A, 66, 568-574, (2007)
[10] Chou, K.-C., Low-frequency collective motion in biomacromolecules and its biological functions, Biophys. Chem., 30, 3-48, (1988)
[11] Chou, K.-C., Low-frequency resonance and cooperativity of hemoglobin, Trends Biochem. Sci., 14, 212, (1989)
[12] Chou, K.-C., A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins, J. Biol. Chem., 268, 16938-16948, (1993)
[13] Chou, K.-C., Prediction of human immunodeficiency virus protease cleavage sites in proteins, Anal. Biochem., 233, 1-14, (1996)
[14] Chou, K.-C., Structural bioinformatics and its impact to biomedical science, Curr. Med. Chem., 11, 2105-2134, (2004)
[15] Chou, K.-C., Some remarks on protein attribute prediction and pseudo amino acid composition, J. Theor. Biol., 273, 236-247, (2011) · Zbl 1405.92212
[16] Chou, K.-C.; Zhang, C.-T., Prediction of protein structural classes, Crit. Rev. Biochem. Mol. Biol., 30, 275-349, (1995)
[17] Chou, K.-C.; Cai, Y.-D., Prediction of membrane protein types by incorporating amphipathic effects, J. Chem. Inf. Model., 45, 407-413, (2005)
[18] Chou, K.-C.; Kézdy, F. J.; Reusser, F., Kinetics of processive nucleic acid polymerases and nucleases, Anal. Biochem., 221, 217-230, (1994)
[19] Chou, K.-C.; Watenpaugh, K. D.; Heinrikson, R. L., A model of the complex between cyclin-dependent kinase 5 and the activation domain of neuronal cdk5 activator, Biochem. Biophys. Res. Commun., 259, 420-428, (1999)
[20] Chou, K.-C.; Wei, D.-Q.; Zhong, W.-Z., Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS, Biochem. Biophys. Res. Commun., 308, 148-151, (2003)
[21] Cui, W.; Yan, X., Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR, Chemom. Intell. Lab. Syst., 98, 130-135, (2009)
[22] da Cunha, E. F.F.; Sippl, W.; de Castro Ramalho, T.; Ceva Antunes, O. A.; de Alencastro, R. B.; Albuquerque, M. G., 3D-QSAR comfa/comsia models based on theoretical active conformers of HOE/BAY-793 analogs derived from HIV-1 protease inhibitor complexes, Eur. J. Med. Chem., 44, 4344-4352, (2009)
[23] Debnath, A. K., Three-dimensional quantitative structure-activity relationship study on cyclic urea derivatives as HIV-1 protease inhibitors: application of comparative molecular field analysis, J. Med. Chem., 42, 249-259, (1999)
[24] Debouck, C., The HIV-1 protease as a therapeutic target for AIDS, AIDS Res. Hum. Retroviruses, 8, 153-164, (1992)
[25] Dong, M.-x.; Zhang, J.; Peng, X.-q.; Lu, H.; Yun, L.-h.; Jiang, S.; Dai, Q.-y., Tricyclononene carboxamide derivatives as novel anti-HIV-1 agents, Eur. J. Med. Chem., 45, 4096-4103, (2010)
[26] Du, Q.-S.; Sun, H.; Chou, K.-C., Inhibitor design for SARS coronavirus main protease based on “distorted key theory”, Med. Chem., 3, 1-6, (2007)
[27] Du, Q.-S.; Huang, R.-B.; Chou, K.-C., Recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design, Curr. Protein Pept. Sci., 9, 248-259, (2008)
[28] Du, Q.-S.; Jiang, Z.-Q.; He, W.-Z.; Li, D.-P.; Chou, K.-C., Amino acid principal component analysis (AAPCA) and its applications in protein structural class prediction, J. Biomol. Struct. Dyn., 23, 635-640, (2006)
[29] Du, Q. S.; Huang, R. B.; Wei, Y. T.; Du, L. Q.; Chou, K. C., Multiple field three dimensional quantitative structure-activity relationship (MF‐3D‐QSAR), J. Comput. Chem., 29, 211-219, (2008)
[30] Du, Q. S.; Huang, R. B.; Wei, Y. T.; Pang, Z. W.; Du, L. Q.; Chou, K. C., Fragment‐based quantitative structure-activity relationship (FB‐QSAR) for fragment‐based drug design, J. Comput. Chem., 30, 295-304, (2009)
[31] Dudek, A. Z.; Arodz, T.; Galvez, J., Computational methods in developing quantitative structure-activity relationships (QSAR): a review, Comb. Chem. High Throughput Screening, 9, 213-228, (2006)
[32] Durrant, J. D.; McCammon, J. A., BINANA: a novel algorithm for ligand-binding characterization, J. Mol. Graphics Model, 29, 888-893, (2011)
[33] Fatemi, M. H.; Baher, E., A novel quantitative structure-activity relationship model for prediction of biomagnification factor of some organochlorine pollutants, Mol. Divers., 13, 343-352, (2009)
[34] Ferrão, M. F.; Godoy, S. C.; Gerbase, A. E.; Mello, C.; Furtado, J. C.; Petzhold, C. L.; Poppi, R. J., Non-destructive method for determination of hydroxyl value of Soybean polyol by LS-SVM using HATR/FT-IR, Anal. Chem. Acta, 595, 114-119, (2007)
[35] Gan, Y.-R.; Huang, H.; Huang, Y.-D.; Rao, C.-M.; Zhao, Y.; Liu, J.-S.; Wu, L.; Wei, D.-Q., Synthesis and activity of an octapeptide inhibitor designed for SARS coronavirus main proteinase, Peptides, 27, 622-625, (2006)
[36] Ganser-Pornillos, B. K.; Yeager, M.; Sundquist, W. I., The structural biology of HIV assembly, Curr. Opin. Struct. Biol., 18, 203-217, (2008)
[37] Gramatica, P., Principles of QSAR models validation: internal and external, QSAR Comb. Sci., 26, 694-701, (2007)
[38] Gramatica, P., 2011. A Short History of QSAR Evolution.
[39] Hajisharifi, Z.; Piryaiee, M.; Mohammad Beigi, M.; Behbahani, M.; Mohabatkar, H., Predicting anticancer peptides with chou’s pseudo amino acid composition and investigating their mutagenicity via ames test, J. Theor. Biol., 341, 34-40, (2014)
[40] Halder, A. K.; Jha, T., Validated predictive QSAR modeling of<i>N</i>-aryl-oxazolidinone-5-carboxamides for anti-HIV protease activity, Bioorg. Med. Chem. Lett., 20, 6082-6087, (2010)
[41] Huang, R.-B.; Du, Q.-S.; Wang, C.-H.; Chou, K.-C., An in-depth analysis of the biological functional studies based on the NMR M2 channel structure of influenza A virus, Biochem. Biophys. Res. Commun., 377, 1243-1247, (2008)
[42] Katritzky, A.; Lobanov, V.; Karelson, M., CODESSA comprehensive descriptors for structural and statistical analysis, Reference Manual, (1994)
[43] Kroeger Smith, M. B.; Hughes, S. H.; Boyer, P. L.; Michejda, C. J.; Rouzer, C. A.; Taneyhill, L. A.; Smith, R. H.; Smith, N. A.; Janssen, P. A.; Moereels, H., Molecular modeling studies of HIV‐1 reverse transcriptase nonnucleoside inhibitors: total energy of complexation as a predictor of drug placement and activity, Protein Sci., 4, 2203-2222, (1995)
[44] Leonard, J. T.; Roy, K., Classical QSAR modeling of HIV‐1 reverse transcriptase inhibitor 2‐amino‐6‐arylsulfonylbenzonitriles and congeners, QSAR Comb. Sci., 23, 23-35, (2004)
[45] Li, X.-B.; Wang, S.-Q.; Xu, W.-R.; Wang, R.-L.; Chou, K.-C., Novel inhibitor design for hemagglutinin against H1N1 influenza virus by core hopping method, PLoS One, 6, e28111, (2011)
[46] Li, Y.; Wei, D.-Q.; Gao, W.-N.; Gao, H.; Liu, B.-N.; Huang, C.-J.; Xu, W.-R.; Liu, D.-K.; Chen, H.-F.; Chou, K.-C., Computational approach to drug design for oxazolidinones as antibacterial agents, Med. Chem., 3, 576-582, (2007)
[47] Li, Z.-C.; Zhou, X.-B.; Dai, Z.; Zou, X.-Y., Prediction of protein structural classes by chou’s pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis, Amino Acids, 37, 415-425, (2009)
[48] Lin, S.-X.; Lapointe, J., J. biomed. sci. eng., Theoretical and experimental biology in one—a symposium in honour of Professor Kuo-Chen Chou’s 50th anniversary and Professor Richard Giegé’s 40th anniversary of their scientific careers, 6, 435, (2013)
[49] Liu, B.; Xu, J.; Lan, X.; Xu, R.; Zhou, J.; Wang, X.; Chou, K.-C., Idna-prot| dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition, PLoS One, 9, e106691, (2014)
[50] Maldonado, A. G.; Doucet, J.; Petitjean, M.; Fan, B.-T., Molecular similarity and diversity in chemoinformatics: from theory to applications, Mol. Divers., 10, 39-79, (2006)
[51] Minovski, N.; Župerl, Š.; Drgan, V.; Novič, M., Assessment of applicability domain for multivariate counter-propagation artificial neural network predictive models by minimum Euclidean distance space analysis: a case study, Anal. Chem. Acta, 759, 28-42, (2013)
[52] Molegro, A., MVD 5.0 molegro virtual docker, DK-8000 Aarhus C, (2011), (Denmark)
[53] Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem., 19, 1639-1662, (1998)
[54] Neves, B. J.; Bueno, R. V.; Braga, R. C.; Andrade, C. H., Discovery of new potential hits of< i> plasmodium falciparum</i> enoyl-ACP reductase through ligand- and structure-based drug design approaches, Bioorg. Med. Chem. Lett, (2013)
[55] Papa, E.; Kovarich, S.; Gramatica, P., Development, validation and inspection of the applicability domain of QSPR models for physicochemical properties of polybrominated diphenyl ethers, QSAR Comb. Sci., 28, 790-796, (2009)
[56] Parai, M. K.; Huggins, D. J.; Cao, H.; Nalam, M. N.; Ali, A.; Schiffer, C. A.; Tidor, B.; Rana, T. M., Design, synthesis, and biological and structural evaluations of novel HIV-1 protease inhibitors to combat drug resistance, J. Med. Chem., 55, 6328-6341, (2012)
[57] Pielak, R. M.; Schnell, J. R.; Chou, J. J., Mechanism of drug inhibition and drug resistance of influenza A M2 channel, Proc. Natl. Acad. Sci., 106, 7379-7384, (2009)
[58] Prado-Prado, F. J.; González-Díaz, H.; de la Vega, O. M.; Ubeira, F. M.; Chou, K.-C., Unified QSAR approach to antimicrobials. part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds, Bioorg. Med. Chem., 16, 5871-5880, (2008)
[59] Reddy, A. S.; Kumar, S.; Garg, R., Hybrid-genetic algorithm based descriptor optimization and QSAR models for predicting the biological activity of tipranavir analogs for HIV protease inhibition, J. Mol. Graphics Modell., 28, 852-862, (2010)
[60] Release, H., 7.5 for windows, molecular modeling system, Hypercube. Inc., (2002)
[61] Roy, K.; Leonard, J. T., QSAR modeling of HIV-1 reverse transcriptase inhibitor 2-amino-6-arylsulfonylbenzonitriles and congeners using molecular connectivity and E-state parameters, Bioorg. Med. Chem., 12, 745-754, (2004)
[62] Roy, K.; Leonard, J. T., Classical QSAR modeling of anti‐HIV 2, 3‐diaryl‐1, 3‐thiazolidin‐4‐ones, QSAR Comb. Sci., 24, 579-592, (2005)
[63] Roy, K.; Leonard, J. T., QSAR by LFER model of cytotoxicity data of anti-HIV 5-phenyl-1-phenylamino-1< i> H</i>-imidazole derivatives using principal component factor analysis and genetic function approximation, Bioorg. Med. Chem., 13, 2967-2973, (2005)
[64] Shen, H.-B.; Chou, K.-C., Hivcleave: a web-server for predicting human immunodeficiency virus protease cleavage sites in proteins, Anal. Biochem., 375, 388-390, (2008)
[65] Shen, H.-B.; Yang, J.; Chou, K.-C., Euk-ploc: an ensemble classifier for large-scale eukaryotic protein subcellular location prediction, Amino Acids, 33, 57-67, (2007)
[66] Sippl, W.; Höltje, H.-D., Structure-based 3D-QSAR—merging the accuracy of structure-based alignments with the computational efficiency of ligand-based methods, J. Mol. Struct. THEOCHEM, 503, 31-50, (2000)
[67] Sirois, S.; Sing, T.; Chou, K.-C., HIV-1 gp120 V3 loop for structure-based drug design, Curr. Protein Pept. Sci., 6, 413-422, (2005)
[68] Sirois, S.; Touaibia, M.; Chou, K.-C.; Roy, R., Glycosylation of HIV-1 gp120 V3 loop: towards the rational design of a synthetic carbohydrate vaccine, Curr. Med. Chem., 14, 3232-3242, (2007)
[69] Sirois, S.; Tsoukas, C.; Chou, K.-C.; Wei, D.; Boucher, C.; Hatzakis, G., Selection of molecular descriptors with artificial intelligence for the understanding of HIV-1 protease peptidomimetic inhibitors-activity, Med. Chem., 1, 173-184, (2005)
[70] Stewart, J. J., MOPAC: a semiempirical molecular orbital program, J. Comput. Aided Mol. Des., 4, 1-103, (1990)
[71] Suykens, J. A.; Vandewalle, J., Least squares support vector machine classifiers, Neural Process. Lett., 9, 293-300, (1999)
[72] Tetko, I. V.; Sushko, I.; Pandey, A. K.; Zhu, H.; Tropsha, A.; Papa, E.; Oberg, T.; Todeschini, R.; Fourches, D.; Varnek, A., Critical assessment of QSAR models of environmental toxicity against tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection, J. Chem. Inf. Model., 48, 1733-1746, (2008)
[73] Thompson, M.A., 2004. ArgusLab 4.0. 1. Planaria Software LLC, Seattle, WA.
[74] Todeschini, R.; Consonni, V., Handbook of molecular descriptors, (2008), Wiley, (com)
[75] Todeschini, R.; Consonni, V., Molecular descriptors for chemoinformatics, (2009), Wiley, (com)
[76] Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M., DRAGON-software for the calculation of molecular descriptors, Web version 3, (2004)
[77] Trott, O.; Olson, A. J., Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 31, 455-461, (2010)
[78] Ul-Haq, Z.; Usmani, S.; Shamshad, H.; Mahmood, U.; Halim, S. A., A combined 3D-QSAR and docking studies for the in-silico prediction of HIV-protease inhibitors, Chem. Cent. J., 7, 88, (2013)
[79] Wang, J.-F.; Chou, K.-C., Insight into the molecular switch mechanism of human rab5a from molecular dynamics simulations, Biochem. Biophys. Res. Commun., 390, 608-612, (2009)
[80] Wang, J.-F.; Chou, K.-C., Insights from studying the mutation-induced allostery in the M2 proton channel by molecular dynamics, Protein Eng. Des. Sel., 23, 663-666, (2010)
[81] Wang, J.-F.; Chou, K.-C., Insights from modeling the 3D structure of New Delhi metallo-β-lactamse and its binding interactions with antibiotic drugs, PLoS One, 6, e18414, (2011)
[82] Wang, J.-F.; Chou, K.-C., Insights into the mutation-induced HHH syndrome from modeling human mitochondrial ornithine transporter-1, PLoS One, 7, e31048, (2012)
[83] Wang, J.-F.; Gong, K.; Wei, D.-Q.; Li, Y.-X.; Chou, K.-C., Molecular dynamics studies on the interactions of PTP1B with inhibitors: from the first phosphate-binding site to the second one, Protein Eng. Des. Sel., 22, 349-355, (2009)
[84] Wang, S.-Q.; Du, Q.-S.; Chou, K.-C., Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases, Biochem. Biophys. Res. Commun., 354, 634-640, (2007)
[85] Wei, H.; Wang, C.-H.; Du, Q.-S.; Meng, J.; Chou, K.-C., Investigation into adamantane-based M2 inhibitors with FB-QSAR, Med. Chem., 5, 305-317, (2009)
[86] Xiao, X.; Wu, Z.-C.; Chou, K.-C., Iloc-virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites, J. Theor. Biol., 284, 42-51, (2011) · Zbl 1397.92238
[87] Yap, C.; Li, H.; Ji, Z.; Chen, Y., Regression methods for developing QSAR and QSPR models to predict compounds of specific pharmacodynamic, pharmacokinetic and toxicological properties, Mini Rev. Med. Chem., 7, 1097-1107, (2007)
[88] Zhang, J.; Luan, C. H.; Chou, K. C.; Johnson, G. V., Identification of the N‐terminal functional domains of cdk5 by molecular truncation and computer modeling, Proteins Struct. Funct. Bioinf., 48, 447-453, (2002)
[89] Zhuo, Y.; Kong, R.; Cong, X.-j.; Chen, W.-z.; Wang, C.-x., Three-dimensional QSAR analyses of 1,3,4-trisubstituted pyrrolidine-based CCR5 receptor inhibitors, Eur. J. Med. Chem., 43, 2724-2734, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.