Phosphorylation-induced changes in the energetic frustration in human tank binding kinase 1. (English) Zbl 1406.92186

Summary: Tank binding kinase 1 (TBK-1) plays an important role in immunity, inflammation, autophagy, cell growth and proliferation. Nevertheless, a key molecular and structural detail of TBK-1 phosphorylation and activation has been largely unknown. Here we investigated the energy landscape of phosphorylated (active) and unphosphorylated (inactive) forms of human TBK-1 to characterize the interplay between phosphorylation and local frustration. By employing the algorithm equipped with energy function and implemented in Frustratometer web-server (http://www.frustratometer.tk), we quantify the role of frustration in the activation of TBK-1. Accordingly, the conformational changes were observed in phosphoregulated active and inactive TBK-1. Substantial changes in frustration, flexibility and interatomic motions were observed among different forms of TBK-1. Structurally rigid kinase domain constitutes a minimally frustrated hub in the core of the catalytic domain, and highly frustrated clusters mainly at the C-lobe might enable the conformational transitions during activation. Also, a large network of highly frustrated interactions is found in the SDD domain of TBK-1 involved in protein-protein interactions and dimerization. The contact maps of the activation loop and \(\alpha\)-C helix of kinase domain showed significant changes upon phosphorylation. Cross correlation analysis indicate that both intra and inter subunit correlated motions increases with phosphorylation of TBK-1. Phosphorylation thus introduces subtle changes in long-range contacts that might lead to significant conformational change of TBK-1.


92C40 Biochemistry, molecular biology
Full Text: DOI


[1] Agostini, F.; Vendruscolo, M.; Tartaglia, G. G., Sequence-based prediction of protein solubility, J. Mol. Biol., 421, 237-241, (2012), [pii]
[2] Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N., Consurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules, Nucleic Acids Res., 44, W344-W350, (2016), [pii]
[3] Baldwin, A. S., Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappab, J. Clin. Invest., 107, 241-246, (2001)
[4] Barbie, D. A.; Tamayo, P.; Boehm, J. S.; Kim, S. Y.; Moody, S. E.; Dunn, I. F.; Schinzel, A. C.; Sandy, P.; Meylan, E.; Scholl, C.; Frohling, S.; Chan, E. M.; Sos, M. L.; Michel, K.; Mermel, C.; Silver, S. J.; Weir, B. A.; Reiling, J. H.; Sheng, Q.; Gupta, P. B.; Wadlow, R. C.; Le, H.; Hoersch, S.; Wittner, B. S.; Ramaswamy, S.; Livingston, D. M.; Sabatini, D. M.; Meyerson, M.; Thomas, R. K.; Lander, E. S.; Mesirov, J. P.; Root, D. E.; Gilliland, D. G.; Jacks, T.; Hahn, W. C., Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1, Nature, 462, 108-112, (2009), [pii]
[5] Bryngelson, J. D.; Wolynes, P. G., Spin glasses and the statistical mechanics of protein folding, Proc. Natl. Acad. Sci. USA, 84, 7524-7528, (1987)
[6] Bryngelson, J. D.; Onuchic, J. N.; Socci, N. D.; Wolynes, P. G., Funnels, pathways, and the energy landscape of protein folding: a synthesis, Proteins, 21, 167-195, (1995)
[7] Buck, M.; Rosen, M. K., Structural biology. flipping a switch, Science, 291, 2329-2330, (2001)
[8] Clement, J. F.; Meloche, S.; Servant, M. J., The IKK-related kinases: from innate immunity to oncogenesis, Cell Res., 18, 889-899, (2008)
[9] Cohen, P., The origins of protein phosphorylation, Nat. Cell Biol., 4, E127-E130, (2002), [pii]
[10] Davtyan, A.; Schafer, N. P.; Zheng, W.; Clementi, C.; Wolynes, P. G.; Papoian, G. A., AWSEM-MD: protein structure prediction using coarse-grained physical potentials and bioinformatically based local structure biasing, J. Phys. Chem. B, 116, 8494-8503, (2012)
[11] Ferreiro, D. U.; Hegler, J. A.; Komives, E. A.; Wolynes, P. G., Localizing frustration in native proteins and protein assemblies, Proc. Natl. Acad. Sci. USA, 104, 19819-19824, (2007), [pii]
[12] Fitzgerald, K. A.; McWhirter, S. M.; Faia, K. L.; Rowe, D. C.; Latz, E.; Golenbock, D. T.; Coyle, A. J.; Liao, S. M.; Maniatis, T., Ikkepsilon and TBK1 are essential components of the IRF3 signaling pathway, Nat. Immunol., 4, 491-496, (2003), [pii]
[13] Goncalves, A.; Burckstummer, T.; Dixit, E.; Scheicher, R.; Gorna, M. W.; Karayel, E.; Sugar, C.; Stukalov, A.; Berg, T.; Kralovics, R.; Planyavsky, M.; Bennett, K. L.; Colinge, J.; Superti-Furga, G., Functional dissection of the TBK1 molecular network, PLoS One, 6, e23971, (2011), [pii]
[14] Guo, J. P.; Shu, S. K.; He, L.; Lee, Y. C.; Kruk, P. A.; Grenman, S.; Nicosia, S. V.; Mor, G.; Schell, M. J.; Coppola, D.; Cheng, J. Q., Deregulation of IKBKE is associated with tumor progression, poor prognosis, and cisplatin resistance in Ovarian cancer, Am. J. Pathol., 175, 324-333, (2009), [pii]
[15] Humphrey, S. J.; James, D. E.; Mann, M., Protein phosphorylation: a major switch mechanism for metabolic regulation, Trends Endocrinol. Metab., 26, 676-687, (2015), [pii]
[16] Hunter, T., Signaling-2000 and beyond, Cell, 100, 113-127, (2000), doi:S0092-8674(00)81688-8 [pii]
[17] Jenik, M.; Parra, R. G.; Radusky, L. G.; Turjanski, A.; Wolynes, P. G.; Ferreiro, D. U., Protein frustratometer: a tool to localize energetic frustration in protein molecules, Nucleic Acids Res., 40, W348-W351, (2012), [pii]
[18] Jiang, J.; Zhu, Q.; Gendron, T. F.; Saberi, S.; McAlonis-Downes, M.; Seelman, A.; Stauffer, J. E.; Jafar-Nejad, P.; Drenner, K.; Schulte, D.; Chun, S.; Sun, S.; Ling, S. C.; Myers, B.; Engelhardt, J.; Katz, M.; Baughn, M.; Platoshyn, O.; Marsala, M.; Watt, A.; Heyser, C. J.; Ard, M. C.; De Muynck, L.; Daughrity, L. M.; Swing, D. A.; Tessarollo, L.; Jung, C. J.; Delpoux, A.; Utzschneider, D. T.; Hedrick, S. M.; de Jong, P. J.; Edbauer, D.; Van Damme, P.; Petrucelli, L.; Shaw, C. E.; Bennett, C. F.; Da Cruz, S.; Ravits, J.; Rigo, F.; Cleveland, D. W.; Lagier-Tourenne, C., Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing rnas, Neuron, 90, 535-550, (2016), [pii]
[19] Johnson, L. N.; Barford, D., The effects of phosphorylation on the structure and function of proteins, Annu. Rev. Biophys. Biomol. Struct., 22, 199-232, (1993)
[20] Karasev Dcapital, A. C.; Veselova, D. A.; Veselovsky capital, A. C.; Sobolev, B. N.; Zgoda, V. G.; Archakov, A. I., Spatial features of proteins related to their phosphorylation and associated structural changes, Proteins, (2017)
[21] Karin, M.; Yamamoto, Y.; Wang, Q. M., The IKK NF-kappa B system: a treasure trove for drug development, Nat. Rev. Drug Discov., 3, 17-26, (2004), [pii]
[22] Kast, D.; Espinoza-Fonseca, L. M.; Yi, C.; Thomas, D. D., Phosphorylation-induced structural changes in smooth muscle myosin regulatory light chain, Proc. Natl. Acad. Sci. USA, 107, 8207-8212, (2010), [pii]
[23] Larabi, A.; Devos, J. M.; Ng, S. L.; Nanao, M. H.; Round, A.; Maniatis, T.; Panne, D., Crystal structure and mechanism of activation of TANK-binding kinase 1, Cell Rep., 3, 734-746, (2013), [pii]
[24] Latzer, J.; Shen, T.; Wolynes, P. G., Conformational switching upon phosphorylation: a predictive framework based on energy landscape principles, Biochemistry, 47, 2110-2122, (2008)
[25] Lee, S. E.; Hong, M.; Cho, J.; Lee, J.; Kim, K. M., Ikkepsilon and TBK1 expression in gastric cancer, Oncotarget, 8, 16233-16242, (2017), [pii]
[26] Li, S.; Wang, L.; Berman, M.; Kong, Y. Y.; Dorf, M. E., Mapping a dynamic innate immunity protein interaction network regulating type I interferon production, Immunity, 35, 426-440, (2011), [pii]
[27] Lin, R.; Heylbroeck, C.; Pitha, P. M.; Hiscott, J., Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation, Mol. Cell Biol., 18, 2986-2996, (1998)
[28] Moser, C. V.; Kynast, K.; Baatz, K.; Russe, O. Q.; Ferreiros, N.; Costiuk, H.; Lu, R.; Schmidtko, A.; Tegeder, I.; Geisslinger, G.; Niederberger, E., The protein kinase ikkepsilon is a potential target for the treatment of inflammatory hyperalgesia, J. Immunol., 187, 2617-2625, (2011), [pii]
[29] Newman, A. C.; Scholefield, C. L.; Kemp, A. J.; Newman, M.; McIver, E. G.; Kamal, A.; Wilkinson, S., TBK1 kinase addiction in lung cancer cells is mediated via autophagy of tax1bp1/ndp52 and non-canonical NF-kappab signalling, PLoS One, 7, e50672, (2012), [pii]
[30] Nussinov, R.; Wolynes, P. G., A second molecular biology revolution? the energy landscapes of biomolecular function, Phys. Chem. Chem. Phys., 16, 6321-6322, (2014)
[31] Onuchic, J. N.; Wolynes, P. G., Theory of protein folding, Curr. Opin. Struct. Biol., 14, 70-75, (2004), [pii]
[32] Parra, R. G.; Schafer, N. P.; Radusky, L. G.; Tsai, M. Y.; Guzovsky, A. B.; Wolynes, P. G.; Ferreiro, D. U., Protein frustratometer 2: a tool to localize energetic frustration in protein molecules, now with electrostatics, Nucleic Acids Res., 44, W356-W360, (2016), [pii]
[33] Pilli, M.; Arko-Mensah, J.; Ponpuak, M.; Roberts, E.; Master, S.; Mandell, M. A.; Dupont, N.; Ornatowski, W.; Jiang, S.; Bradfute, S. B.; Bruun, J. A.; Hansen, T. E.; Johansen, T.; Deretic, V., TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation, Immunity, 37, 223-234, (2012), [pii]
[34] Plotkin, S. S.; Onuchic, J. N., Understanding protein folding with energy landscape theory. part II: quantitative aspects, Q. Rev. Biophys., 35, 205-286, (2002)
[35] Plotkin, S. S.; Onuchic, J. N., Understanding protein folding with energy landscape theory. part I: basic concepts, Q. Rev. Biophys., 35, 111-167, (2002)
[36] Ramelot, T. A.; Nicholson, L. K., Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR, J. Mol. Biol., 307, 871-884, (2001), [pii]
[37] Randow, F., How cells deploy ubiquitin and autophagy to defend their cytosol from bacterial invasion, Autophagy, 7, 304-309, (2011), doi:14539 [pii]
[38] Sormanni, P.; Aprile, F. A.; Vendruscolo, M., The camsol method of rational design of protein mutants with enhanced solubility, J. Mol. Biol., 427, 478-490, (2015), [pii]
[39] Steen, H.; Jebanathirajah, J. A.; Springer, M.; Kirschner, M. W., Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS, Proc. Natl. Acad. Sci. USA, 102, 3948-3953, (2005), [pii]
[40] Thurston, T. L.; Ryzhakov, G.; Bloor, S.; von Muhlinen, N.; Randow, F., The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria, Nat. Immunol., 10, 1215-1221, (2009), [pii]
[41] Tsuzuki, S.; Tachibana, M.; Hemmi, M.; Yamaguchi, T.; Shoji, M.; Sakurai, F.; Kobiyama, K.; Kawabata, K.; Ishii, K. J.; Akira, S.; Mizuguchi, H., TANK-binding kinase 1-dependent or -independent signaling elicits the cell-type-specific innate immune responses induced by the adenovirus vector, Int. Immunol., 28, 105-115, (2016), [pii]
[42] van der Zee, J.; Gijselinck, I.; Van Mossevelde, S.; Perrone, F.; Dillen, L.; Heeman, B.; Baumer, V.; Engelborghs, S.; De Bleecker, J.; Baets, J.; Gelpi, E.; Rojas-Garcia, R.; Clarimon, J.; Lleo, A.; Diehl-Schmid, J.; Alexopoulos, P.; Perneczky, R.; Synofzik, M.; Just, J.; Schols, L.; Graff, C.; Thonberg, H.; Borroni, B.; Padovani, A.; Jordanova, A.; Sarafov, S.; Tournev, I.; de Mendonca, A.; Miltenberger-Miltenyi, G.; Simoes do Couto, F.; Ramirez, A.; Jessen, F.; Heneka, M. T.; Gomez-Tortosa, E.; Danek, A.; Cras, P.; Vandenberghe, R.; De Jonghe, P.; De Deyn, P. P.; Sleegers, K.; Cruts, M.; Van Broeckhoven, C.; Goeman, J.; Nuytten, D.; Smets, K.; Robberecht, W.; Damme, P. V.; Bleecker, J.; Santens, P.; Dermaut, B.; Versijpt, J.; Michotte, A.; Ivanoiu, A.; Deryck, O.; Bergmans, B.; Delbeck, J.; Bruyland, M.; Willems, C.; Salmon, E.; Pastor, P.; Ortega-Cubero, S.; Benussi, L.; Ghidoni, R.; Binetti, G.; Hernandez, I.; Boada, M.; Ruiz, A.; Sorbi, S.; Nacmias, B.; Bagnoli, S.; Sanchez-Valle, R.; Llado, A.; Santana, I.; Rosario Almeida, M.; Frisoni, G. B.; Maetzler, W.; Matej, R.; Fraidakis, M. J.; Kovacs, G. G.; Fabrizi, G. M.; Testi, S., TBK1 mutation spectrum in an extended European patient cohort with frontotemporal dementia and amyotrophic lateral sclerosis, Hum. Mutat., 38, 297-309, (2017)
[43] Vangone, A.; Spinelli, R.; Scarano, V.; Cavallo, L.; Oliva, R., COCOMAPS: a web application to analyze and visualize contacts at the interface of biomolecular complexes, Bioinformatics, 27, 2915-2916, (2011), [pii]
[44] Verheijen, J.; van der Zee, J.; Gijselinck, I.; Van den Bossche, T.; Dillen, L.; Heeman, B.; Gomez-Tortosa, E.; Llado, A.; Sanchez-Valle, R.; Graff, C.; Pastor, P.; Pastor, M. A.; Benussi, L.; Ghidoni, R.; Binetti, G.; Clarimon, J.; de Mendonca, A.; Gelpi, E.; Tsolaki, M.; Diehl-Schmid, J.; Nacmias, B.; Almeida, M. R.; Borroni, B.; Matej, R.; Ruiz, A.; Engelborghs, S.; Vandenberghe, R.; De Deyn, P. P.; Cruts, M.; Van Broeckhoven, C.; Sleegers, K., Common and rare TBK1 variants in early-onset alzheimer disease in a European cohort, Neurobiol. Aging, (2017), doi:S0197-4580(17)30351-2 [pii]
[45] Wolynes, P. G., Recent successes of the energy landscape theory of protein folding and function, Q. Rev. Biophys., 38, 405-410, (2005), S0033583505004075 [pii]
[46] Wolynes, P. G., Evolution, energy landscapes and the paradoxes of protein folding, Biochimie, 119, 218-230, (2015), [pii]
[47] Xie, X.; Zhang, D.; Zhao, B.; Lu, M. K.; You, M.; Condorelli, G.; Wang, C. Y.; Guan, K. L., Ikappab kinase epsilon and TANK-binding kinase 1 activate AKT by direct phosphorylation, Proc. Natl. Acad. Sci. USA, 108, 6474-6479, (2011), [pii]
[48] Xu, G.; Lo, Y. C.; Li, Q.; Napolitano, G.; Wu, X.; Jiang, X.; Dreano, M.; Karin, M.; Wu, H., Crystal structure of inhibitor of kappab kinase beta, Nature, 472, 325-330, (2011), [pii]
[49] Yazdi, S.; Naumann, M.; Stein, M., Double phosphorylation-induced structural changes in the signal-receiving domain of ikappabalpha in complex with NF-kappab, Proteins, 85, 17-29, (2017)
[50] Yoneyama, M.; Suhara, W.; Fukuhara, Y.; Fukuda, M.; Nishida, E.; Fujita, T., Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300, EMBO J., 17, 1087-1095, (1998)
[51] Zheng, W.; Schafer, N. P.; Davtyan, A.; Papoian, G. A.; Wolynes, P. G., Predictive energy landscapes for protein-protein association, Proc. Natl. Acad. Sci. USA, 109, 19244-19249, (2012), [pii]
[52] Zhuravlev, P. I.; Papoian, G. A., Protein functional landscapes, dynamics, allostery: a tortuous path towards a universal theoretical framework, Q. Rev. Biophys., 43, 295-332, (2010), [pii]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.