×

zbMATH — the first resource for mathematics

Alternative splicing regulatory network reconstruction from exon array data. (English) Zbl 1406.92251
Summary: Pre-mRNA alternative splicing (AS) allows individual genes to produce multiple types of mRNA and associated protein isoforms. While AS regulation enables the production of the hundreds of thousands of types of proteins needed for the normal functioning of the human cell, it also presents many opportunities for the onset of cancer and other diseases. The AS process is known to be regulated by a group of serine/arginine rich (SR) proteins, heterogeneous nuclear ribonucleoproteins (hnRNPs), and small nuclear ribonucleoprotein (snRNP) particles through a complex assembly. Each gene-exon is regulated by one or multiple splicing regulators, from which one may hypothesize the existence of an alternative splicing regulatory network (SRN). The SRN contains a list of gene-exons, for each of which the factors that up/down regulate them are provided. Since defects in the SRN play key roles in human disease, a reconstruction of human SRN could be used to facilitate the design of diagnostic and therapeutic strategies. In this paper, we present a methodology to automate genome-wide SRN reconstruction. We construct SRN based on an extensive correlation analysis of human exon expression microarray data, conventional gene expression microarray profiles, and an experimentally verified AS and transcriptional regulatory interaction training set. This SRN reconstruction methodology is demonstrated and software (AutoNet) that automates the reconstruction of SRN is developed. A genome-wide SRN was constructed for normal human cells and an assessment of the reliability of each predicted interaction is provided. Human SRN we constructed are free available from our web portal: https://ruby.chem.indiana.edu/scorenfl/srn_results/lookup0.php
MSC:
92C42 Systems biology, networks
92C40 Biochemistry, molecular biology
92D10 Genetics and epigenetics
Software:
AutoNet; BNArray
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arikan, M.C.; Memmott, J.; Broderick, J.A.; Lafyatis, R.; Screaton, G.; Stamm, S.; Andreadis, A., Modulation of the membrane-binding projection domain of tau protein: splicing regulation of exon 3, Molecular brain research, 101, 109-121, (2002)
[2] Cartegni, L.; Krainer, A., Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1, Nature, 30, 377-384, (2002)
[3] Castle, J.; Garrett-Engele, P.; Armour, C.; Duenwald, S.; Loerch, P.; Meyer, M.; Schadt, E.; Stoughton, R.; Parrish, M.; Shoemaker, D.; Johnson, J., Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing, Biology, 4, R66, 1-13, (2003)
[4] Chang, C.Q.; Ding, Z.; Hung, Y.S.; Fung, P.C.W., Fast network component analysis (fastnca) for gene regulatory network reconstruction from microarray data, Bioinformatics, 24, 1349-1358, (2008)
[5] Chen, X.H.; Chen, M.; Ning, K.D., Bnarray: an R package for constructing gene regulatory networks from microarray data by using Bayesian network, Bioinformatics, 22, 2952-2954, (2006)
[6] Cuperlovic-Culf, M.; Belacel, N.; Culf, A.; Ouellette, R., Microarray analysis of alternative splicing, Journal of integrative biology, 10, 344-357, (2006)
[7] Das, D.; Clark, T.; Schweitzer, A.; Yamamoto, M.; Marr, H.; Arribere, J.; Minovitsky, S.; Poliakov, A.; Dubchak, I.; Blume, J.; Conboy, J., A correlation with exon expression approach to identify cis-regulatory elements for tissue-specific alternative splicing, Nucleic acids research, 35, 4845-4857, (2007)
[8] Gardner, T.S.; di Bernardo, D.; Lorenz, D.; Collins, J.J., Inferring genetic networks and identifying compound mode of action via expression profiling, Science, 301, 102-105, (2003)
[9] Graveley, B.R., Sorting out the complexity of SR protein functions, RNA, 6, 1197-1211, (2000)
[10] Gutierrez-Rios, R.M.; Rosenblueth, D.A.; Loza, J.A.; Huerta, A.M.; Glasner, J.D.; Blattner, F.R.; Collado-Vides, J., Regulatory network of Escherichia coli: consistency between literature knowledge and microarray profiles, Genome research, 13, 2435-2443, (2003)
[11] Huang, Z.; Li, J.; Su, H.; Watts, G.S.; Chen, H., Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining, Decision support systems, 43, 1207-1225, (2007)
[12] Johnson, J.; Castle, J.; Garrett-Engele, P.; Kan, Z.; Loerch, P.; Armour, C.; Santos, R.; Schadt, E.; Stoughton, R.; Shoemaker, D., Genome-wide survey of human alternative pre-mrna splicing with exon-junction microarrrays, Science, 302, 2141-2144, (2003)
[13] Kondo, S.; Yamamoto, N.; Murakami, T.; Okumura, M.; Mayeda, A.; Imaizumi, K., Tra2 beta, SF2/ASF and srp30c modulate the function of an exonic splicing enhancer in exon 10 of tau pre-mrna, Genes to cells, 9, 121-130, (2004)
[14] Li, H.Q.; Zhou, M.; Cui, Y., Ranking gene regulatory network models with microarray data and Bayesian network, Data mining and knowledge management, 3327, 109-118, (2004)
[15] Li, K.; Arikan, M.C.; Andreadis, A., Modulation of the membrane-binding domain of tau protein: splicing regulation of exon 2, Molecular brain research, 116, 94-105, (2003)
[16] Mabon, S.A.; Misteli, T., Differential recruitment of pre-mrna splicing factors to alternatively spliced transcripts in vivo, Plos biology, 3, 1893-1901, (2005)
[17] Matlin, A.; Clark, F.; Smith, C., Understanding alternative splicing: towards a cellular code, Nature, 6, 386-398, (2005)
[18] Modrek, B.; Lee, C., A genomic view of alternative splicing, Nature genetics, 30, 13-19, (2002)
[19] Ortoleva, P., Automated transcriptional regulatory network discovery applied to diabetes, vol. 346,628.00. Government, Indiana University Bloomington CCVT 2007, pp. 1-73.
[20] Pazos, F.; Valencia, A., Similarity of phylogenetic trees as indicator of protein – protein interaction, Protein engineering, 14, 609-614, (2001)
[21] Qu, K.; Ortoleva, P., Understanding stem cell differentiation through self-organization theory, Journal of theoretical biology, 250, 606-620, (2008) · Zbl 1397.92171
[22] Qu, K.; Abi Haidar, A.; Fan, J.; Ensman, L.; Tuncay, K.; Jolly, M.; Ortoleva, P., Cancer onset and progression: a genome-wide, nonlinear dynamical systems perspective on onconetworks, Journal of theoretical biology, 246, 234-244, (2007)
[23] Sano, R.; Ogata, Y.; Sakurai, N.; Aoki, K.; Suzuki, H.; Saito, K.; Shibata, D., Elucidation of regulatory network for isoprenoid biosynthesis using correlation coefficients from microarray expression data, Plant and cell physiology, 47, (2006), S51-S51
[24] Sayyed-Ahmad, A.; Tuncay, K.; Ortoleva, P.J., Transcriptional regulatory network refinement and quantification through kinetic modeling, gene expression microarray data and information theory, BMC bioinformatics, 8:20, (2007)
[25] Stamm, S.; Ben-Ari, S.; Rafalska, I.; Tang, Y.; Zhang, Z.; Toiber, D.; Thanaraj, T.; Soreq, H., Function of alternative splicing, Gene, 344, 1-20, (2005)
[26] Stamm, S.; Riethoven, J.J.; Le Texier, V.; Gopalakrishnan, C.; Kumanduri, V.; Tang, Y.; Barbosa-Morais, N.; Thanaraj, T., ASD: a bioinformatics resource on alternative splicing, Nucleic acids research, 34, D46-D55, (2006)
[27] Sun, J.; Tuncay, K.; Haidar, A.A.; Stanley, F.; Trelinski, M.; Ortoleva, P., Transcriptional regulatory network discovery via multiple method integration: application to E. coli K12, Algorithms in molecular biology, 2:2, (2007)
[28] Takeda, J.; Suzuki, Y.; Nakao, M.; Kuroda, T.; Sugano, S.; Gojobori, T.; Imanishi, T., H-DBAS: alternative splicing database of completely sequenced and manually annotated full-length cdnas based on H-invitational, Nucleic acids research, 35, D104-D109, (2007)
[29] Thanaraj, T.A.; Stamm, S.; Clark, F.; Riethoven, J.J.; Le Texier, V.; Muilu, J., ASD: the alternative splicing database, Nucleic acids research, 32, D64-D69, (2004)
[30] Tuncay, K.; Ensmann, L.; Sun, J.; Haidarn, A.A.; Stanley, F.; Trelinskin, M.; Ortoleva, P., Transcriptional regulatory networks via gene ontology and expression data, In silico biology, 7, (2006)
[31] Wang, J.N.; Gao, Q.S.; Wang, Y.Z.; Lafyatis, R.; Stamm, S.; Andreadis, A., Tau exon 10, whose missplicing causes frontotemporal dementia, is regulated by an intricate interplay of cis elements and trans factors, Journal of neurochemistry, 88, 1078-1090, (2004)
[32] Wang, Y.Z.; Wang, J.N.; Gao, L.; Lafyatis, R.; Stamm, S.; Andreadis, A., Tau exons 2 and 10, which are misregulated in neurodegenerative diseases, are partly regulated by silencers which bind a srp30c center dot srp55 complex that either recruits or antagonizes htra2 beta 1, Journal of biological chemistry, 280, 14230-14239, (2005)
[33] Wu, J.Y.; Kar, A.; Kuo, D.; Yu, B.; Havlioglu, N., Srp54 (SFRS11), a regulator for tau exon 10 alternative splicing identified by an expression cloning strategy, Molecular and cellular biology, 26, 6739-6747, (2006)
[34] Xing, Y.; Kapur, K.; Wong, W., Probe selection and expression index computation of affymetrix exon arrays, Plos, 1, e88, 1-9, (2006)
[35] Zhou, X.H.J.; Kao, M.C.J.; Huang, H.Y.; Wong, A.; Nunez-Iglesias, J.; Primig, M.; Aparicio, O.M.; Finch, C.E.; Morgan, T.E.; Wong, W.H., Functional annotation and network reconstruction through cross-platform integration of microarray data, Nature biotechnology, 23, 238-243, (2005)
[36] Zou, M.; Conzen, S.D., A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data, Bioinformatics, 21, 71-79, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.