×

zbMATH — the first resource for mathematics

iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC. (English) Zbl 1406.92189
Summary: Investigation into the network of protein-protein interactions (PPIs) will provide valuable insights into the inner workings of cells. Accordingly, it is crucially important to develop an automated method or high-throughput tool that can efficiently predict the PPIs. In this study, a new predictor, called “iPPI-PseAAC(CGR)”, was developed by incorporating the information of “chaos game representation” into the PseAAC (pseudo amino acid composition). The advantage by doing so is that some key sequence-order or sequence-pattern information can be more effectively incorporated during the treatment of the protein pair samples. The operation engine used in this predictor is the random forests algorithm. It has been observed via the cross-validations on the widely used benchmark datasets that the success rates achieved by the proposed predictor are remarkably higher than those by its existing counterparts. For the convenience of the most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/iPPI-PseAAC(CGR), by which users can easily get their desired results without the need to go through the detailed mathematics.

MSC:
92C40 Biochemistry, molecular biology
92D20 Protein sequences, DNA sequences
68T05 Learning and adaptive systems in artificial intelligence
62P10 Applications of statistics to biology and medical sciences; meta analysis
92-08 Computational methods for problems pertaining to biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahmad, S.; Kabir, M.; Hayat, M., Identification of heat shock protein families and J-protein types by incorporating dipeptide composition into Chou’s general PseAAC, Comput. Methods Programs Biomed., 122, 165-174, (2015)
[2] Akbar, S.; Hayat, M., iMethyl-STTNC: Identification of N(6)-methyladenosine sites by extending the Idea of SAAC into Chou’s PseAAC to formulate RNA sequences, J. Theor. Biol., 455, 205-211, (2018)
[3] Al Maruf, M. A.; Shatabda, S., iRSpot-SF: Prediction of recombination hotspots by incorporating sequence based features into Chou’s Pseudo components, Genomics, (2018)
[4] Althaus, I. W.; Chou, J. J.; Gonzales, A. J.; Diebel, M. R.; Kezdy, F. J.; Romero, D. L.; Aristoff, P. A.; Tarpley, W. G.; Reusser, F., Kinetic studies with the nonnucleoside HIV-1 reverse transcriptase inhibitor U-88204E, Biochemistry, 32, 6548-6554, (1993)
[5] Althaus, I. W.; Chou, J. J.; Gonzales, A. J.; Diebel, M. R.; Kezdy, F. J.; Romero, D. L.; Aristoff, P. A.; Tarpley, W. G.; Reusser, F., Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E, J. Biol. Chem., 268, 6119-6124, (1993)
[6] Althaus, I. W.; Gonzales, A. J.; Chou, J. J.; Diebel, M. R.; Kezdy, F. J.; Romero, D. L.; Aristoff, P. A.; Tarpley, W. G.; Reusser, F., The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase, J. Biol. Chem., 268, 14875-14880, (1993)
[7] Arif, M.; Hayat, M.; Jan, Z., iMem-2LSAAC: A two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition, J. Theor. Biol., 442, 11-21, (2018) · Zbl 1397.92180
[8] Behbahani, M.; Mohabatkar, H.; Nosrati, M., Analysis and comparison of lignin peroxidases between fungi and bacteria using three different modes of Chou’s general pseudo amino acid composition, J. Theor. Biol., 411, 1-5, (2016)
[9] Bock, J. R.; Gough, D. A., Whole-proteome interaction mining, Bioinformatics, 19, 125-134, (2003)
[10] Breiman, L., Random forests, Mach. Learn., 45, 5-32, (2001) · Zbl 1007.68152
[11] Cai, L.; Huang, T.; Su, J.; Zhang, X.; Chen, W.; Zhang, F.; He, L., Implications of newly identified brain eQTL genes and their interactors in Schizophrenia, Mole. Ther. - Nucleic Acids, 12, 433-442, (2018)
[12] Cai, L.; Yuan, W.; Zhang, Z.; He, L., In-depth comparison of somatic point mutation callers based on different tumor next-generation sequencing depth data, Sci. Rep., 6, 36540, (2016)
[13] Cai, Y. D., Predicting subcellular localization of proteins in a hybridization space, Bioinformatics, 20, 1151-1156, (2004)
[14] Cai, Y. D.; Feng, K. Y.; Lu, W. C., Using logitBoost classifier to predict protein structural classes, J. Theor. Biol., 238, 172-176, (2006)
[15] Cao, D. S.; Xu, Q. S.; Liang, Y. Z., propy: a tool to generate various modes of Chou’s PseAAC, Bioinformatics, 29, 960-962, (2013)
[16] Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; Kegelmeyer, W. P., SMOTE: synthetic minority over-sampling technique, J. Artif. Intell. Res., 16, 321-357, (2011) · Zbl 0994.68128
[17] Chen, J.; Liu, H.; Yang, J., Prediction of linear B-cell epitopes using amino acid pair antigenicity scale, Amino Acids, 33, 423-428, (2007)
[18] Chen, W.; Ding, H.; Feng, P.; Lin, H., iACP: a sequence-based tool for identifying anticancer peptides, Oncotarget, 7, 16895-16909, (2016)
[19] Chen, W.; Ding, H.; Zhou, X.; Lin, H., iRNA(m6A)-PseDNC: identifying N6-methyladenosine sites using pseudo dinucleotide composition, Anal. Biochem., (2018)
[20] Chen, W.; Feng, P.; Ding, H.; Lin, H., iRNA-Methyl: identifying N6-methyladenosine sites using pseudo nucleotide composition, Anal. Biochem., 490, 26-33, (2015)
[21] Chen, W.; Feng, P.; Ding, H.; Lin, H., Using deformation energy to analyze nucleosome positioning in genomes, Genomics, 107, 69-75, (2016)
[22] Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H., iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences, Oncotarget, 8, 4208-4217, (2017)
[23] Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H., iRNA-3typeA: identifying 3-types of modification at RNA’s adenosine sites, Mole. Ther. Nucleic Acid, 11, 468-474, (2018)
[24] Chen, W.; Feng, P. M.; Deng, E. Z.; Lin, H., iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition, Anal. Biochem., 462, 76-83, (2014)
[25] Chen, W.; Feng, P. M.; Lin, H., iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition, Biomed Res. Int. (BMRI), (2014), (2014)
[26] Chen, W.; Feng, P. M.; Lin, H.; Chou, K. C., iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition, Nucleic Acids Res., 41, e68, (2013)
[27] Chen, W.; Lei, T. Y.; Jin, D. C.; Lin, H.; Chou, K. C., PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition, Anal. Biochem., 456, 53-60, (2014)
[28] Chen, W.; Lin, H., Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences, Mol. Biosyst., 11, 2620-2634, (2015)
[29] Chen, W.; Lin, H.; Feng, P. M.; Ding, C.; Zuo, Y. C., iNuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties, PLoS One, 7, e47843, (2012)
[30] Chen, W.; Tang, H.; Ye, J.; Lin, H., iRNA-PseU: identifying RNA pseudouridine sites, Mole. Ther. Nucleic Acids, 5, e332, (2016)
[31] Chen, Z.; Zhao, P. Y.; Li, F.; Leier, A.; Marquez-Lago, T. T.; Wang, Y.; Webb, G. I.; Smith, A. I.; Daly, R. J.; Song, J., iFeature: a python package and web server for features extraction and selection from protein and peptide sequences, Bioinformatics, 34, 2499-2502, (2018)
[32] Cheng, X.; Lin, W. Z.; Xiao, X., pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC, Bioinformatics, (2018)
[33] Cheng, X.; Xiao, X., pLoc-mPlant: predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC, Mol. Biosyst., 13, 1722-1727, (2017)
[34] Cheng, X.; Xiao, X., pLoc_bal-mGneg: predict subcellular localization of gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC, J. Theor. Biol., (2018)
[35] Cheng, X.; Xiao, X., pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information, Bioinformatics, 34, 1448-1456, (2018)
[36] Cheng, X.; Xiao, X., pLoc-mGneg: predict subcellular localization of gram-negative bacterial proteins by deep gene ontology learning via general PseAAC, Genomics, 110, 231-239, (2018)
[37] Cheng, X.; Xiao, X., pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC, Genomics, 110, 50-58, (2018)
[38] Cheng, X.; Xiao, X., pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC, Gene (Erratum: ibid., 644, 315-321, (2018), Vol156-156) 628 (2017)
[39] Cheng, X.; Zhao, S. G.; Lin, W. Z.; Xiao, X., pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites, Bioinformatics, 33, 3524-3531, (2017)
[40] Cheng, X.; Zhao, S. G.; Xiao, X., iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals, Oncotarget, 8, 58494-58503, (2017)
[41] Cheng, X.; Zhao, S. G.; Xiao, X., iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals, Bioinformatics, 33, 2017, 341-346, (2017), (Corrigendum, ibid.Vol.2610) 33
[42] Chou, K. C., Graphic rules in steady and non-steady enzyme kinetics, J. Biol. Chem., 264, 12074-12079, (1989)
[43] Chou, K. C., Review: applications of graph theory to enzyme kinetics and protein folding kinetics, Steady Non-steady State Syst Biophy. Chem., 35, 1-24, (1990)
[44] Chou, K. C., A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins, J. Biol. Chem., 268, 16938-16948, (1993)
[45] Chou, K. C., Prediction of signal peptides using scaled window, Peptides, 22, 1973-1979, (2001)
[46] Chou, K. C., Using subsite coupling to predict signal peptides, Protein Eng., 14, 75-79, (2001)
[47] Chou, K. C., Prediction of protein cellular attributes using pseudo amino acid composition, Proteins Struct. Funct. Genet., 44, 2001, 246-255, (2001), (Erratum: ibid.Vol.60) 43
[48] Chou, K. C., Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes, Bioinformatics, 21, 10-19, (2005)
[49] Chou, K. C., Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology, Curr. Proteomics, 6, 262-274, (2009)
[50] Chou, K. C., Graphic rule for drug metabolism systems, Curr. Drug Metab., 11, 369-378, (2010)
[51] Chou, K. C., Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review), J. Theor. Biol., 273, 236-247, (2011) · Zbl 1405.92212
[52] Chou, K. C., Some remarks on predicting multi-label attributes in molecular biosystems, Mol. Biosyst., 9, 1092-1100, (2013)
[53] Chou, K. C., Impacts of bioinformatics to medicinal chemistry, Med. Chem., 11, 218-234, (2015)
[54] Chou, K. C., An unprecedented revolution in medicinal chemistry driven by the progress of biological science, Curr. Top. Med. Chem., 17, 2337-2358, (2017)
[55] Chou, K. C.; Cai, Y. D., A new hybrid approach to predict subcellular localization of proteins by incorporating gene ontology, Biochem. Biophy. Res. Commun. (BBRC), 311, 743-747, (2003)
[56] Chou, K. C.; Cai, Y. D., Prediction of protease types in a hybridization space, Biochem. Biophys. Res. Comm. (BBRC), 339, 1015-1020, (2006)
[57] Chou, K. C.; Cai, Y. D., Predicting protein-protein interactions from sequences in a hybridization space, J. Proteome Res., 5, 316-322, (2006)
[58] Chou, K. C.; Cheng, X.; Xiao, X., pLoc_bal-mHum: predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset, Genomics, (2018)
[59] Chou, K. C.; Elrod, D. W., Bioinformatical analysis of G-protein-coupled receptors, J. Proteome Res., 1, 429-433, (2002)
[60] Chou, K. C.; Forsen, S., Graphical rules for enzyme-catalyzed rate laws, Biochem. J., 187, 829-835, (1980)
[61] Chou, K. C.; Jiang, S. P.; Liu, W. M.; Fee, C. H., Graph theory of enzyme kinetics: 1. Steady-state reaction system, Sci. Sin., 22, 341-358, (1979) · Zbl 0399.92007
[62] Chou, K. C.; Shen, H. B., Recent progresses in protein subcellular location prediction, Anal. Biochem., 370, 1-16, (2007)
[63] Chou, K. C.; Shen, H. B., Recent advances in developing web-servers for predicting protein attributes, Nat. Sci., 1, 63-92, (2009)
[64] Chou, K. C.; Shen, H. B., FoldRate: A web-server for predicting protein folding rates from primary sequence, Open Bioinform. J., 3, 31-50, (2009)
[65] Chou, K. C.; Zhang, C. T., Review: prediction of protein structural classes, Crit. Rev. Biochem. Mol. Biol., 30, 275-349, (1995)
[66] Contreras-Torres, E., Predicting structural classes of proteins by incorporating their global and local physicochemical and conformational properties into general Chou’s PseAAC, J. Theor. Biol., 454, 139-145, (2018)
[67] Deschavanne, P.; Tuffery, P., Exploring an alignment free approach for protein classification and structural class prediction, Biochimie, 90, 615-625, (2008)
[68] Ding, H.; Deng, E. Z.; Yuan, L. F.; Liu, L.; Lin, H.; Chen, W., iCTX-Type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels, BioMed. Res. Int. (BMRI), (2014), (2014)
[69] Du, P.; Gu, S.; Jiao, Y., PseAAC-General: fast building various modes of general form of Chou’s pseudo amino acid composition for large-scale protein datasets, Int. J. Mol. Sci., 15, 3495-3506, (2014)
[70] Du, P.; Wang, X.; Xu, C.; Gao, Y., PseAAC-Builder: a cross-platform stand-alone program for generating various special Chou’s pseudo amino acid compositions, Anal. Biochem., 425, 117-119, (2012)
[71] Ehsan, A.; Mahmood, K.; Khan, Y. D.; Khan, S. A., A novel modeling in mathematical biology for classification of signal peptides, Sci. Rep., 8, 1039, (2018)
[72] Esmaeili, M.; Mohabatkar, H.; Mohsenzadeh, S., Using the concept of Chou’s pseudo amino acid composition for risk type prediction of human papillomaviruses, J. Theor. Biol., 263, 203-209, (2010)
[73] Fan, Y. N.; Xiao, X.; Min, J. L., iNR-Drug: predicting the interaction of drugs with nuclear receptors in cellular networking, Int. J. Mol. Sci. (IJMS), 15, 4915-4937, (2014)
[74] Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H., iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC, Mol. Ther. Nucleic Acids, 7, 155-163, (2017)
[75] Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W., iDNA6mA-PseKNC: identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC, Genomics, (2018)
[76] Feng, P. M.; Chen, W.; Lin, H., iHSP-PseRAAAC: identifying the heat shock protein families using pseudo reduced amino acid alphabet composition, Anal. Biochem., 442, 118-125, (2013)
[77] Fiser, A.; Tusnady, G. E.; Simon, I., Chaos game representation of protein structures, J. Mol. Graph., 12, 302-304, (1994)
[78] Georgiou, D. N.; Karakasidis, T. E.; Nieto, J. J.; Torres, A., Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou’s pseudo amino acid composition, J. Theor. Biol., 257, 17-26, (2009) · Zbl 1400.92393
[79] Guo, S. H.; Deng, E. Z.; Xu, L. Q.; Ding, H.; Lin, H.; Chen, W., iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition, Bioinformatics, 30, 1522-1529, (2014)
[80] Guo, Y.; Yu, L.; Wen, Z.; Li, M., Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences, Nucleic Acids Res., 36, 3025-3030, (2008)
[81] Gupta, M. K.; Niyogi, R.; Misra, M., An alignment-free method to find similarity among protein sequences via the general form of Chou’s pseudo amino acid composition, SAR QSAR Environ. Res., 24, 597-609, (2013)
[82] Hajisharifi, Z.; Piryaiee, M.; Mohammad Beigi, M.; Behbahani, M.; Mohabatkar, H., Predicting anticancer peptides with Chou’s pseudo amino acid composition and investigating their mutagenicity via Ames test, J. Theor. Biol., 341, 34-40, (2014)
[83] Hayat, M.; Iqbal, N., Discriminating protein structure classes by incorporating pseudo average chemical shift to Chou’s general PseAAC and support vector machine, Comput. Methods Programs Biomed., 116, 184-192, (2014)
[84] Hayat, M.; Khan, A., Discriminating outer membrane proteins with Fuzzy K-Nearest neighbor algorithms based on the general form of Chou’s PseAAC, Protein Pept. Lett., 19, 411-421, (2012)
[85] Hu, L.; Huang, T.; Shi, X.; Lu, W. C.; Cai, Y. D.; Chou, K. C., Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties, PLoS One, 6, e14556, (2011)
[86] Hu, L. L.; Feng, K. Y.; Cai, Y. D., Using protein-protein interaction network information to predict the subcellular locations of proteins in budding yeast, Protein Pept. Lett., 19, 644-651, (2012)
[87] Huang, T.; Chen, L.; Cai, Y. D., Classification and analysis of regulatory pathways using graph property, biochemical and physicochemical property, and functional property, PLoS One, 6, e25297, (2011)
[88] Javed, F.; Hayat, M., Predicting subcellular localizations of multi-label proteins by incorporating the sequence features into Chou’s PseAAC, Genomics, (2018)
[89] Jeffrey, H. J., Chaos game representation of gene structure, Nucleic Acids Res., 18, 2163-2170, (1990)
[90] Jia, J.; Liu, Z.; Xiao, X., iPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC, J. Theor. Biol., 377, 47-56, (2015)
[91] Jia, J.; Liu, Z.; Xiao, X.; Liu, B., iPPBS-Opt: a sequence-based ensemble classifier for identifying protein-protein binding sites by optimizing imbalanced training datasets, Molecules, 21, E95, (2016)
[92] Jia, J.; Liu, Z.; Xiao, X.; Liu, B., iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset, Anal. Biochem., 497, 48-56, (2016)
[93] Jia, J.; Liu, Z.; Xiao, X.; Liu, B., iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC, Oncotarget, 7, 34558-34570, (2016)
[94] Jia, J.; Liu, Z.; Xiao, X.; Liu, B., pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach, J. Theor. Biol., 394, 223-230, (2016) · Zbl 1343.92153
[95] Jia, J.; Liu, Z.; Xiao, X.; Liu, B., Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition (iPPBS-PseAAC), J. Biomol. Struct. Dyn. (JBSD), 34, 1946-1961, (2016)
[96] Jia, J.; Zhang, L.; Liu, Z.; Xiao, X., pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC, Bioinformatics, 32, 3133-3141, (2016)
[97] Ju, Z.; Wang, S. Y., Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou’s general pseudo amino acid composition, Gene, 664, 78-83, (2018)
[98] Kandaswamy, K. K.; Martinetz, T.; Moller, S.; Suganthan, P. N.; Sridharan, S.; Pugalenthi, G., AFP-Pred: arandom forest approach for predicting antifreeze proteins from sequence-derived properties, J. Theor. Biol., 270, 56-62, (2011)
[99] Khan, Y. D.; Rasool, N.; Hussain, W.; Khan, S. A., iPhosT-PseAAC: identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC, Anal. Biochem., 550, 109-116, (2018)
[100] Khosravian, M.; Faramarzi, F. K.; Beigi, M. M.; Behbahani, M.; Mohabatkar, H., Predicting antibacterial peptides by the concept of Chou’s pseudo amino acid composition and machine learning methods, Protein Pept. Lett., 20, 180-186, (2013)
[101] Krishnan, M. S., Using Chou’s general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains, J. Theor. Biol., 445, 62-74, (2018)
[102] Kumar, R.; Srivastava, A.; Kumari, B.; Kumar, M., Prediction of beta-lactamase and its class by Chou’s pseudo amino acid composition and support vector machine, J. Theor. Biol., 365, 96-103, (2015) · Zbl 1314.92055
[103] Li, B. Q.; Huang, T.; Liu, L.; Cai, Y. D., Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network, PLoS One, 7, e33393, (2012)
[104] Li, F.; Li, C.; Marquez-Lago, T. T.; Leier, A.; Akutsu, T.; Purcell, A. W.; Smith, A. I.; Lightow, T.; Daly, R. J.; Song, J., Quokka: a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome, Bioinformatics, (2018)
[105] Lin, H.; Deng, E. Z.; Ding, H.; Chen, W.; Chou, K. C., iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition, Nucleic Acids Res., 42, 12961-12972, (2014)
[106] Lin, W. Z.; Fang, J. A.; Xiao, X., iDNA-prot: identification of DNA binding proteins using random forest with grey model, PLoS One, 6, e24756, (2011)
[107] Liu, B.; Fang, L.; Liu, F.; Wang, X., iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach, J Biomol Struct Dyn (JBSD), 34, 223-235, (2016)
[108] Liu, B.; Fang, L.; Liu, F.; Wang, X.; Chen, J., Identification of real microRNA precursors with a pseudo structure status composition approach, PLoS One, 10, (2015)
[109] Liu, B.; Fang, L.; Long, R.; Lan, X., iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition, Bioinformatics, 32, 362-369, (2016)
[110] Liu, B.; Fang, L.; Wang, S.; Wang, X.; Li, H., Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy, J. Theor. Biol., 385, 153-159, (2015)
[111] Liu, B.; Li, K.; Huang, D. S., iEnhancer-EL: Identifying enhancers and their strength with ensemble learning approach, Bioinformatics, (2018)
[112] Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L., Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences, Nucleic Acids Res., 43, W65-W71, (2015)
[113] Liu, B.; Long, R., iDHS-EL: identifying DNase I hypersensi-tivesites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework, Bioinformatics, 32, 2411-2418, (2016)
[114] Liu, B.; Wang, S.; Long, R., iRSpot-EL: identify recombination spots with an ensemble learning approach, Bioinformatics, 33, 35-41, (2017)
[115] Liu, B.; Weng, F.; Huang, D. S., iRO-3wPseKNC: identify DNA replication origins by three-window-based PseKNC, Bioinformatics, (2018)
[116] Liu, B.; Wu, H., Pse-in-One 2.0: An improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences, Nat. Sci., 9, 67-91, (2017)
[117] Liu, B.; Xu, J.; Lan, X.; Xu, R.; Zhou, J.; Wang, X., iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition, PLoS One, 9, (2014)
[118] Liu, B.; Yang, F., 2L-piRNA: a two-layer ensemble classifier for identifying piwi-interacting RNAs and their function, Mole. Ther. Nucleic Acids, 7, 267-277, (2017)
[119] Liu, B.; Yang, F.; Huang, D. S., iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC, Bioinformatics, 34, 33-40, (2018)
[120] Liu, L. M.; Xu, Y., iPGK-PseAAC: identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC, Med. Chem., 13, 552-559, (2017)
[121] Liu, Z.; Xiao, X.; Qiu, W. R., iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition, Anal. Biochem., 474, 69-77, (2015)
[122] Liu, Z.; Xiao, X.; Yu, D. J.; Jia, J.; Qiu, W. R., pRNAm-PC: predicting N-methyladenosine sites in RNA sequences via physical-chemical properties, Anal. Biochem., 497, 60-67, (2016)
[123] Martin, S.; Roe, D.; Faulon, J. L., Predicting protein-protein interactions using signature products, Bioinformatics, 21, 218-226, (2005)
[124] Meher, P. K.; Sahu, T. K.; Saini, V.; Rao, A. R., Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general, PseAAC. Sci. Rep., 7, 42362, (2017)
[125] Mei, J.; Zhao, J., Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou’s general pseudo amino acid composition and motif features, J. Theor. Biol., 427, 147-153, (2018)
[126] Mei, J.; Zhao, J., Prediction of HIV-1 and HIV-2 proteins by using Chou’s pseudo amino acid compositions and different classifiers, Sci. Rep., 8, 2359, (2018)
[127] Mei, S., Predicting plant protein subcellular multi-localization by Chou’s PseAAC formulation based multi-label homolog knowledge transfer learning, J. Theor. Biol., 310, 80-87, (2012) · Zbl 1337.92065
[128] Michalski, R. S.; Carbonell, J. G.; Mitchell, T. M., Machine learning: An artificial Intelligence Approach, (2013), Springer Science & Business Media
[129] Mohabatkar, H., Prediction of cyclin proteins using Chou’s pseudo amino acid composition, Protein Pept. Lett., 17, 1207-1214, (2010)
[130] Mohabatkar, H.; Mohammad Beigi, M.; Esmaeili, A., Prediction of GABA(A) receptor proteins using the concept of Chou’s pseudo amino acid composition and support vector machine, J. Theor. Biol., 281, 18-23, (2011) · Zbl 1397.92215
[131] Mohammad, B. M.; Behjati, M.; Mohabatkar, H., Prediction of metalloproteinase family based on the concept of Chou’s pseudo amino acid composition using a machine learning approach, J. Struct. Funct. Genomics, 12, 191-197, (2011)
[132] Mondal, S.; Pai, P. P., Chou’s pseudo amino acid composition improves sequence-based antifreeze protein prediction, J. Theor. Biol., 356, 30-35, (2014)
[133] Mousavizadegan, M.; Mohabatkar, H., Computational prediction of antifungal peptides via Chou’s PseAAC and SVM, J. Bioinform. Comput. Biol., (2018)
[134] Nanni, L., Hyperplanes for predicting protein-protein interactions, Neurocomputing, 69, 257-263, (2005)
[135] Nanni, L.; Brahnam, S.; Lumini, A., Wavelet images and Chou’s pseudo amino acid composition for protein classification, Amino Acids, 43, 657-665, (2012)
[136] Nanni, L.; Brahnam, S.; Lumini, A., Prediction of protein structure classes by incorporating different protein descriptors into general Chou’s pseudo amino acid composition, J. Theor. Biol., 360, 109-116, (2014) · Zbl 1343.92387
[137] Nanni, L.; Lumini, A., An ensemble of K-local hyperplanes for predicting protein-protein interactions, Bioinformatics, 22, 1207-1210, (2006)
[138] Nanni, L.; Lumini, A., Genetic programming for creating Chou’s pseudo amino acid based features for submitochondria localization, Amino Acids, 34, 653-660, (2008)
[139] Pugalenthi, G.; Kandaswamy, K. K.; Vivekanandan, S.; Kolatkar, P., RSARF: prediction of residue solvent accessibility from protein sequence using random forest method, Protein Pept. Lett., 19, 50-56, (2012)
[140] Qiu, W. R.; Jiang, S. Y.; Sun, B. Q.; Xiao, X.; Cheng, X., iRNA-2methyl: identify RNA 2′-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and ensemble classifier, Med. Chem., 13, 734-743, (2017)
[141] Qiu, W. R.; Jiang, S. Y.; Xu, Z. C.; Xiao, X., iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition, Oncotarget, 8, 41178-41188, (2017)
[142] Qiu, W. R.; Sun, B. Q.; Xiao, X.; Xu, D., iPhos-PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory, Mol. Inf., 36, (2017), UNSP 1600010
[143] Qiu, W. R.; Sun, B. Q.; Xiao, X.; Xu, Z. C., iPTM-mLys: identifying multiple lysine PTM sites and their different types, Bioinformatics, 32, 3116-3123, (2016)
[144] Qiu, W. R.; Sun, B. Q.; Xiao, X.; Xu, Z. C., iHyd-PseCp: identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC, Oncotarget, 7, 44310-44321, (2016)
[145] Qiu, W. R.; Sun, B. Q.; Xiao, X.; Xu, Z. C.; Jia, J. H., iKcr-PseEns: identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier, Genomics, 110, 239-246, (2018)
[146] Qiu, W. R.; Xiao, X., iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components, Int. J. Mol. Sci. (IJMS), 15, 1746-1766, (2014)
[147] Qiu, W. R.; Xiao, X.; Lin, W. Z., iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach, Biomed. Res. Int. (BMRI), (2014), (2014)
[148] Qiu, W. R.; Xiao, X.; Lin, W. Z., iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model, J. Biomol. Struct. Dyn. (JBSD), 33, 1731-1742, (2015)
[149] Qiu, W. R.; Xiao, X.; Xu, Z. C., iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier, Oncotarget, 7, 51270-51283, (2016)
[150] Rahimi, M.; Bakhtiarizadeh, M. R.; Mohammadi-Sangcheshmeh, A., OOgenesis_Pred: a sequence-based method for predicting oogenesis proteins by six different modes of Chou’s pseudo amino acid composition, J. Theor. Biol., 414, 128-136, (2017)
[151] Rahman, S. M.; Shatabda, S.; Saha, S.; Kaykobad, M.; Rahman, M. Sohel, DPP-PseAAC: A DNA-binding protein prediction model using Chou’s general PseAAC, J. Theor. Biol., 452, 22-34, (2018)
[152] Ren, L. H.; Shen, Y. Z.; Ding, Y. S., Bio-entity network for analysis of protein-protein interaction networks, Asian J. Control, 13, 726-737, (2011) · Zbl 1303.93030
[153] Sahu, S. S.; Panda, G., A novel feature representation method based on Chou’s pseudo amino acid composition for protein structural class prediction, Comput. Biol. Chem., 34, 320-327, (2010) · Zbl 1403.92221
[154] Song, J.; Li, F.; Leier, A.; Marquez-Lago, T. T.; Akutsu, T.; Haffari, G.; Webb, G. I.; Pike, R. N., PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy, Bioinformatics, 34, 684-687, (2018)
[155] Song, J.; Li, F.; Takemoto, K.; Haffari, G.; Akutsu, T.; Webb, G. I., PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural and network features in a machine learning framework, J. Theor. Biol., 443, 125-137, (2018)
[156] Song, J.; Wang, Y.; Li, F.; Akutsu, T.; Rawlings, N. D.; Webb, G. I., iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites, Brief. Bioinform., (2018)
[157] Srivastava, A.; Kumar, R.; Kumar, M., BlaPred: predicting and classifying beta-lactamase using a 3-tier prediction system via Chou’s general PseAAC, J. Theor. Biol., (2018)
[158] Su, Z. D.; Huang, Y.; Zhang, Z. Y.; Zhao, Y. W.; Wang, D.; Chen, W.; Lin, H., iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC, Bioinformatics, (2018)
[159] Tahir, M.; Hayat, M.; Kabir, M., Sequence based predictor for discrimination of enhancer and their types by applying general form of Chou’s trinucleotide composition, Comput. Methods Programs Biomed., 146, 69-75, (2017)
[160] Tripathi, P.; Pandey, P. N., A novel alignment-free method to classify protein folding types by combining spectral graph clustering with Chou’s pseudo amino acid composition, J. Theor. Biol., 424, 49-54, (2017)
[161] Wang, J.; Yang, B.; Leier, A.; Marquez-Lago, T. T.; Hayashida, M.; Rocker, A.; Yanju, Z.; Akutsu, T.; Strugnell, R. A.; Song, J.; Lithgow, T., Bastion6: a bioinformatics approach for accurate prediction of type VI secreted effectors, Bioinformatics, 34, 2546-2555, (2018)
[162] Wang, J.; Yang, B.; Revote, J.; Leier, A.; Marquez-Lago, T. T.; Webb, G.; Song, J.; Lithgow, T., POSSUM: a bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles, Bioinformatics, 33, 2756-2758, (2017)
[163] Wu, Z. C.; Xiao, X., 2D-MH: A web-server for generating graphic representation of protein sequences based on the physicochemical properties of their constituent amino acids, J. Theor. Biol., 267, 29-34, (2010)
[164] Xenarios, I.; Salwinski, L.; Duan, X. J.; Higney, P.; Kim, S.-M.; Eisenberg, D., DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions, Nucleic Acids Res., 30, 303-305, (2002)
[165] Xia, J.-F.; Han, K.; Huang, D.-S., Sequence-based prediction of protein-protein interactions by means of rotation forest and autocorrelation descriptor, Protein Pept. Lett., 17, 137-145, (2010)
[166] Xiao, X.; Cheng, X.; Su, S.; Nao, Q., pLoc-mGpos: incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins, Nat. Sci., 9, 331-349, (2017)
[167] Xiao, X.; Min, J. L.; Lin, W. Z.; Liu, Z.; Cheng, X., iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach, J. Biomol. Struct. Dyn. (JBSD), 33, 2221-2233, (2015)
[168] Xiao, X.; Shao, S.; Ding, Y.; Huang, Z.; Chen, X., An application of gene comparative image for predicting the effect on replication ratio by HBV virus gene missense mutation, J. Theor. Biol., 235, 555-565, (2005)
[169] Xiao, X.; Shao, S.; Ding, Y.; Huang, Z.; Chen, X., Using cellular automata to generate image representation for biological sequences, Amino Acids, 28, 29-35, (2005)
[170] Xiao, X.; Shao, S. H., A probability cellular automaton model for hepatitis B viral infections, Biochem Biophys Res Comm (BBRC), 342, 605-610, (2006)
[171] Xiao, X.; Ye, H. X.; Liu, Z.; Jia, J. H., iROS-gPseKNC: predicting replication origin sites in DNA by incorporating dinucleotide position-specific propensity into general pseudo nucleotide composition, Oncotarget, 7, 34180-34189, (2016)
[172] Xu, R.; Zhou, J.; Liu, B.; He, Y. A.; Zou, Q.; Wang, X., Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach, J. Biomol. Struct. Dyn. (JBSD), 33, 1720-1730, (2015)
[173] Xu, Y.; Ding, J.; Wu, L. Y., iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition, PLoS One, 8, e55844, (2013)
[174] Xu, Y.; Li, C., iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC, Med. Chem., 13, 544-551, (2017)
[175] Xu, Y.; Shao, X. J.; Wu, L. Y.; Deng, N. Y., iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins, PeerJ, 1, e171, (2013)
[176] Xu, Y.; Wen, X.; Shao, X. J.; Deng, N. Y., iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition, Int. J. Mol. Sci. (IJMS), 15, 7594-7610, (2014)
[177] Xu, Y.; Wen, X.; Wen, L. S.; Wu, L. Y.; Deng, N. Y., iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition, PLoS One, 9, (2014)
[178] Xuao, X.; Cheng, X.; Chen, G.; Mao, Q., pLoc_bal-mGpos: predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC, Genomics, (2018)
[179] Yang, H.; Qiu, W. R.; Liu, G.; Guo, F. B.; Chen, W.; Lin, H., iRSpot-Pse6NC: identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general, PseKNC Int. J. Biol. Sci., 14, 883-891, (2018)
[180] Zhang, C. J.; Tang, H.; Li, W. C.; Lin, H.; Chen, W., iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition, Oncotarget, 7, 69783-69793, (2016)
[181] Zhang, C. T., Monte Carlo simulation studies on the prediction of protein folding types from amino acid composition, Biophys. J., 63, 1523-1529, (1992)
[182] Zhang, C. T., An analysis of protein folding type prediction by seed-propagated sampling and jackknife test, J. Protein Chem., 14, 583-593, (1995)
[183] Zhang, L.; Kong, L., iRSpot-ADPM: Identify recombination spots by incorporating the associated dinucleotide product model into Chou’s pseudo components, J. Theor. Biol., 441, 1-8, (2018)
[184] Zhang, S.; Duan, X., Prediction of protein subcellular localization with oversampling approach and Chou’s general PseAAC, J. Theor. Biol., 437, 239-250, (2018) · Zbl 1394.92047
[185] Zhou, G. P., The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism, J. Theor. Biol., 284, 142-148, (2011) · Zbl 1397.92245
[186] Zhou, G. P.; Deng, M. H., An extension of Chou’s graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways, Biochem. J., 222, 169-176, (1984)
[187] Zhou, G. P.; Huang, R. B., The pH-triggered conversion of the PrP(c) to PrP(sc, Curr. Top. Med. Chem., 13, 1152-1163, (2013)
[188] Zhou, X. B.; Chen, C.; Li, Z. C.; Zou, X. Y., Using Chou’s amphiphilic pseudo amino acid composition and support vector machine for prediction of enzyme subfamily classes, J. Theor. Biol., 248, 546-551, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.