# zbMATH — the first resource for mathematics

An ordination approach to explore similarities among communities. (English) Zbl 1406.92680
Summary: Analysis of similarities among communities can help to decipher the biogeographical, evolutionary, and ecological factors that drive local diversity. Recent indices of similarity among communities incorporate not only information on species presence and abundance but also information on how similar species are in their traits and how closely related they are in terms of taxonomy or phylogeny. Towards this aim, trait-based, taxonomic or phylogenetic similarities among species have been defined and bounded between 0 (species are maximally distinct) and 1 (species are similar). A required property for an index of similarity between two communities is that it must provide minimum similarity (0) where communities have maximally distinct species, as well as maximum similarity (1) where communities are equivalent in their trait, taxonomic or phylogenetic compositions. Here, I developed a new ordination methodology that conforms to the requirement: double similarity principal component analysis (DSPCA). DSPCA summarizes multidimensional trait-based, taxonomic or phylogenetic similarities among communities into orthogonal axes. The species that drive each similarity pattern can be identified together with their traits or with their taxonomic or phylogenetic positions. I applied this methodology to theoretical examples and to empirical data sets on bird and bat communities to illustrate key properties of DSPCA. I compared the results obtained with DSPCA with those provided by related approaches. Theoretical and empirical case studies highlight the following additional properties of DSPCA: (i) axes are orthogonal and identify independent (dis)similarity patterns between communities; (ii) the more functionally, taxonomically or phylogenetically similar communities are, the closer they are on an axis; (iii) the coordinate of a species on an axis expresses how representative the species is of the pattern identified by the axis; and (iv) a species is representative of $$x$$ communities if the functional, taxonomic or phylogenetic characteristics of this species are very common within each of these $$x$$ communities. DSPCA is an efficient approach to visualize functional, taxonomic and phylogenetic similarities between communities. It is also a useful alternative to recent methods dedicated to phylogenetic diversity patterns. It will be an asset for all studies that aim to compare functional, taxonomic, genetic and phylogenetic diversity.
##### MSC:
 92D40 Ecology 92D15 Problems related to evolution 92B10 Taxonomy, cladistics, statistics in mathematical biology
##### Keywords:
beta diversity; biodiversity; functional traits; phylogeny; taxonomy
##### Software:
Phylocom; R; sedaR
Full Text:
##### References:
 [1] Albert, A., Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM J. Appl. Math., 17, 434-440, (1969) · Zbl 0265.15002 [2] Blondel, J.; Vuilleumier, F.; Marcus, L. F.; Terouanne, E., Is there ecomorphological convergence among mediterranean bird communities of Chile, California, and France?, (Hecht, M. K.; Wallace, B.; MacIntyre, R. J., Evolutionary Biology, (1984), Plenum Press: Plenum Press New York, NY), 141-213 [3] Bryant, J. A.; Lamanna, C.; Morlon, H.; Kerkhoff, A. J.; Enquist, A. J.; Green, J. L., Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity, Proc. Natl. Acad. Sci. USA, 105, 11505-11511, (2008) [4] Cadotte, M. W.; Albert, C.; Walker, S., The ecology of differences: integrating evolutionary and functional distances, Ecol. Lett., 16, 1234-1244, (2013) [5] Corsten, L. C.; Gabriel, K. R., Graphical exploration in comparing variance matrices, Biometrics, 32, 851-863, (1976) · Zbl 0343.62049 [6] Desdevises, Y.; Legendre, P.; Azouzi, L.; Morand, S., Quantifying phylogenetically structured environmental variation, Evolution, 57, 2647-2652, (2003) [7] Diniz-Filho, J. A.F.; de Sant’Ana, C. E.R.; Bini, L. M., An eigenvector method for estimating phylogenetic inertia, Evolution, 52, 1247-1262, (1998) [8] Duarte, L. D.S, Phylogenetic habitat filtering influences forest nucleation in grasslands, Oikos, 120, 208-215, (2011) [9] Ferrier, S.; Manion, G.; Elith, J.; Richardson, K., Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment, Diversity Distrib., 13, 252-264, (2007) [10] Friedman, S.; Weisberg, H. F., Interpreting the first eigenvalue of a correlation matrix, Educ. Psychol. Meas., 41, 11-21, (1981) [11] Fritz, S. A.; Bininda-Emonds, O. R.P.; Purvis, A., Geographic variation in predictors of mammalian extinction risk: big is bad, but only in the tropics, Ecol. Lett., 12, 538-549, (2009) [12] Giannini, N. P., Canonical phylogenetic ordination, Syst. Biol., 52, 684-695, (2003) [13] Gower, J. C., A general coefficient of similarity and some of its properties, Biometrics, 27, 857-871, (1971) [14] Graham, C. H.; Fine, P. V.A., Phylogenetic beta diversity: linking ecological and evolutionary processes across space and time, Ecol. Lett., 11, 1265-1277, (2008) [15] Hooper, D. U.; Chapin, F. S.; Ewel, J. J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J. H.; Lodge, D. M.; Loreau, M.; Naeem, S.; Schmid, B.; Setälä, H.; Symstad, A. J.; Vandermeer, J.; Wardle, D. A., Effects of biodiversity on ecosystem functioning: a consensus of current knowledge, Ecol. Monogr., 75, 3-35, (2005) [16] Jost, L., Entropy and diversity, Oikos, 113, 363-375, (2006) [17] Lande, R., Statistics and partitioning of species diversity, and similarity among multiple communities, Oikos, 76, 5-13, (1996) [18] Lavorel, S.; Garnier, E., Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail, Funct. Ecol., 16, 545-556, (2002) [19] Legendre, P.; Legendre, L., Numerical Ecology, (1998), Elsevier Science BV.: Elsevier Science BV. Amsterdam, The Netherlands · Zbl 1033.92036 [20] Mayfield, M. M.; Levine, J. M., Opposing effects of competitive exclusion on the phylogenetic structure of communities, Ecol. Lett., 13, 1085-1093, (2010) [21] Medellín, R.; Equihua, M.; Amin, M. A., Bat diversity and abundance as indicators of disturbance in Neotropical rainforest, Conserv. Biol., 14, 1666-1675, (2000) [22] Morrison, D. F., Multivariate Statistical Methods, (1978), McGraw-Hill: McGraw-Hill Singapore · Zbl 0183.20605 [23] Mouillot, D.; Bellwood, D. R.; Baraloto, C.; Chave, J.; Galzin, R.; Harmelin-Vivien, M.; Kulbicki, M.; Lavergne, S.; Lavorel, S.; Mouquet, N.; Paine, C. E.T.; Renaud, J.; Thuiller, W., Rare species support vulnerable functions in high-diversity ecosystems, PLoS Biol., 11, (2013) [24] Ochiai, A., Zoogeographic studies on the soleoid fishes found in Japan and its neighbouring regions, Bull. Jpn. Soc. Sci. Fish., 22, 526-530, (1957) [25] Orloci, L., An agglomerative method for classification of plant communities, J. Ecol., 55, 193-206, (1967) [26] Pavoine, S., A guide through a family of phylogenetic dissimilarity measures among sites, Oikos, 125, 1719-1732, (2016) [27] Pavoine, S.; Bonsall, M., Measuring biodiversity to explain community assembly: a unified approach, Biol. Rev., 86, 792-812, (2011) [28] Pavoine, S.; Dufour, A. B.; Chessel, D., From dissimilarities among species to dissimilarities among communities: a double principal coordinate analysis, J. Theor. Biol., 228, 523-537, (2004) [29] Pavoine, S.; Blondel, J.; Dufour, A. B.; Gasc, A.; Bonsall, M. B., A new technique for analysing interacting factors affecting biodiversity patterns: crossed-DPCoA, PLoS One, 8, e54530, (2013) [30] Pavoine, S.; Ricotta, C., Functional and phylogenetic similarity among communities, Methods Ecol. Evol., 5, 666-675, (2014) [31] Pélissier, R.; Couteron, P.; Dray, S.; Sabatier, D., Consistency between ordination techniques and diversity measurements: two strategies for species occurrence data, Ecology, 84, 242-251, (2003), 10.1890/0012-9658(2003)084[0242:CBOTAD]2.0.CO;2 [32] Power, M. E.; Tilman, D.; Estes, J. A.; Menge, B. A.; Bond, W. J.; Mills, L. S.; Daily, G.; Castilla, J. C.; Lubchenco, J.; Paine, R. T., Challenges in the quest for keystones, BioScience, 46, 609-620, (1996) [33] R: A language and Environment for Statistical Computing, (2018), R Foundation for Statistical Computing: R Foundation for Statistical Computing Vienna, Austria [34] Rao, C. R., Diversity and dissimilarity coefficients: a unified approach, Theor. Popul. Biol., 21, 24-43, (1982) · Zbl 0516.92021 [35] Ricotta, C.; Szeidl, L., Diversity partitioning of Rao’s quadratic entropy, Theor. Popul. Biol., 76, 299-302, (2009) · Zbl 1403.92185 [36] Ricotta, C.; Podani, J.; Pavoine, S., A family of functional dissimilarity measures for presence and absence data, Ecol. Evol., 6, 5383-5389, (2016) [37] Seber, G. A.F., Multivariate Observations, (2004), Wiley: Wiley Hoboken, NJ · Zbl 0627.62052 [38] Seber, G. A.F., A Matrix Handbook for Statisticians, (2008), Wiley: Wiley Hoboken, NJ · Zbl 1143.15001 [39] Stegen, J.; Hurlbert, A. H., Inferring ecological processes from taxonomic, phylogenetic and functional trait β-diversity, PLoS One, 6, e20906, (2011) [40] Swenson, N. G., The assembly of tropical tree community - the advances and shortcomings of phylogenetic and functional trait analyses, Ecography, 36, 264-276, (2013) [41] Walker, B. H., Biodiversity and ecological redundancy, Conserv. Biol., 6, 18-23, (1992) [42] Webb, C. O.; Ackerly, D. D.; Kembel, S. W., Phylocom: software for the analyses of phylogenetic community structure and trait evolution, Bioinformatics, 24, 2098-2100, (2008) [43] Weiher, E.; Freund, D.; Bunton, T.; Stefanski, A.; Lee, T.; Bentivenga, S., Advances, challenges and a developing synthesis of ecological community assembly theory, Philos. Trans. R. Soc. Lond. B: Biol. Sci., 366, 2403-2413, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.