×

zbMATH — the first resource for mathematics

Predicting the ligand-binding properties of Borrelia burgdorferi s.s. Bmp proteins in light of the conserved features of related Borrelia proteins. (English) Zbl 1406.92166
Summary: Bacteria of the genus Borrelia cause vector-borne infections like the most important hard tick-borne disease in the northern hemisphere, Lyme borreliosis (LB), and soft tick or louse transmitted relapsing fevers (RF), prevalent in temperate and tropical areas. Borrelia burgdorferi sensu lato (s.l.) includes several genospecies and causes LB in humans. In infected patients, Borrelia burgdorferi sensu stricto (s.s.) expresses the BmpA, BmpB, BmpC and BmpD proteins. The role of these proteins in the pathogenesis of LB remains incompletely characterized, but they are, however, closely related to Treponema pallidum PnrA (purine nucleoside receptor A), a substrate-binding lipoprotein of the ATP-binding cassette (ABC) transporter family preferentially binding purine nucleosides. Based on 3D homology modeling, the Bmp proteins share the typical fold of the substrate-binding protein family and the ligand-binding properties of BmpA, BmpB and BmpD are highly similar, whereas those of BmpC differ markedly. Nevertheless, these residues are highly conserved within the genus Borrelia and the inferred phylogenetic tree also reveals that the RF Borrelia lack BmpB proteins but has an additional Bmp protein (BmpA2) missing in LB-causing Borrelia burgdorferi s.l. Our results indicate that the Bmp proteins could bind nucleosides, although BmpC might have a different ligand-binding specificity and, therefore, a distinct function. Furthermore, the work provides a means for classifying the Bmp proteins and supports further elucidation of the roles of these proteins.
MSC:
92C40 Biochemistry, molecular biology
92D15 Problems related to evolution
Software:
UniProt
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agarwala, R.; Barrett, T.; Beck, J.; Benson, D. A.; Bollin, C.; Bolton, E.; Bourexis, D.; Brister, J. R.; Bryant, S. H.; Canese, K.; Charowhas, C.; Clark, K.; DiCuccio, M.; Dondoshansky, I.; Feolo, M.; Funk, K.; Geer, L. Y.; Gorelenkov, V.; Hlavina, W.; Hoeppner, M.; Holmes, B.; Johnson, M.; Khotomlianski, V.; Kimchi, A.; Kimelman, M.; Kitts, P.; Klimke, W.; Krasnov, S.; Kuznetsov, A.; Landrum, M. J.; Landsman, D.; Lee, J. M.; Lipman, D. J.; Lu, Z.; Madden, T. L.; Madej, T.; Marchler-Bauer, A.; Karsch-Mizrachi, I.; Murphy, T.; Orris, R.; Ostell, J.; O’Sullivan, C.; Palanigobu, V.; Panchenko, A. R.; Phan, L.; Pruitt, K. D.; Rodarmer, K.; Rubinstein, W.; Sayers, E. W.; Schneider, V.; Schoch, C. L.; Schuler, G. D.; Sherry, S. T.; Sirotkin, K.; Siyan, K.; Slotta, D.; Soboleva, A.; Soussov, V.; Starchenko, G.; Tatusova, T. A.; Todorov, K.; Trawick, B. W.; Vakatov, D.; Wang, Y.; Ward, M.; Wilbur, W. J.; Yaschenko, E.; Zbicz, K., Database resources of the national center for biotechnology information, Nucleic Acids Res., 45, D12-D17, (2017)
[2] Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J., Basic local alignment search tool, J. Mol. Biol., 215, 403-410, (1990)
[3] Bateman, A.; Martin, M. J.; O’Donovan, C.; Magrane, M.; Alpi, E.; Antunes, R.; Bely, B.; Bingley, M.; Bonilla, C.; Britto, R.; Bursteinas, B.; Bye-AJee, H.; Cowley, A.; Da Silva, A.; De Giorgi, M.; Dogan, T.; Fazzini, F.; Castro, L. G.; Figueira, L.; Garmiri, P.; Georghiou, G.; Gonzalez, D.; Hatton-Ellis, E.; Li, W.; Liu, W.; Lopez, R.; Luo, J.; Lussi, Y.; MacDougall, A.; Nightingale, A.; Palka, B.; Pichler, K.; Poggioli, D.; Pundir, S.; Pureza, L.; Qi, G.; Rosanoff, S.; Saidi, R.; Sawford, T.; Shypitsyna, A.; Speretta, E.; Turner, E.; Tyagi, N.; Volynkin, V.; Wardell, T.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Xenarios, I.; Bougueleret, L.; Bridge, A.; Poux, S.; Redaschi, N.; Aimo, L.; ArgoudPuy, G.; Auchincloss, A.; Axelsen, K.; Bansal, P.; Baratin, D.; Blatter, M. C.; Boeckmann, B.; Bolleman, J.; Boutet, E.; Breuza, L.; Casal-Casas, C.; De Castro, E.; Coudert, E.; Cuche, B.; Doche, M.; Dornevil, D.; Duvaud, S.; Estreicher, A.; Famiglietti, L.; Feuermann, M.; Gasteiger, E.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz-Gumowski, N.; Hinz, U.; Hulo, C.; Jungo, F.; Keller, G.; Lara, V.; Lemercier, P.; Lieberherr, D.; Lombardot, T.; Martin, X.; Masson, P.; Morgat, A.; Neto, T.; Nouspikel, N.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pozzato, M.; Pruess, M.; Rivoire, C.; Roechert, B.; Schneider, M.; Sigrist, C.; Sonesson, K.; Staehli, S.; Stutz, A.; Sundaram, S.; Tognolli, M.; Verbregue, L.; Veuthey, A. L.; Wu, C. H.; Arighi, C. N.; Arminski, L.; Chen, C.; Chen, Y.; Garavelli, J. S.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D. A.; Ross, K.; Vinayaka, C. R.; Wang, Q.; Wang, Y.; Yeh, L. S.; Zhang, J., UniProt: the universal protein knowledgebase, Nucleic Acids Res., 45, D158-D169, (2017)
[4] Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E., The protein data bank, Nucleic Acids Res., 28, 235-242, (2000)
[5] Berntsson, R. P.A.; Smits, S. H.J.; Schmitt, L.; Slotboom, D. J.; Poolman, B., A structural classification of substrate-binding proteins, FEBS Lett., (2010)
[6] Bryksin, A. V.; Tomova, A.; Godfrey, H. P.; Cabello, F. C., BmpA is a surface-exposed outer-membrane protein of Borrelia burgdorferi, FEMS Microbiol. Lett., 309, 77-83, (2010)
[7] Bryksin, A. V.; Godfrey, H. P.; Carbonaro, C. A.; Wormser, G. P.; Aguero-Rosenfeld, M. E.; Cabello, F. C., Borrelia burgdorferi BmpA, BmpB, and BmpD proteins are expressed in human infection and contribute to P39 immunoblot reactivity in patients with Lyme disease, Clin. Diagn. Lab. Immunol., 12, 935-940, (2005)
[8] Buddelmeijer, N., The molecular mechanism of bacterial lipoprotein modification—How, when and why?, FEMS Microbiol. Rev., 39, 246-261, (2015)
[9] Caine, J. A.; Coburn, J., Multifunctional and redundant roles of Borrelia burgdorferi outer surface proteins in tissue adhesion, colonization, and complement evasion, Front. Immunol., 7, 1-11, (2016)
[10] Chung, S. Y.; Subbiah, S., A structural explanation for the twilight zone of protein sequence homology, Structure, 4, 1123-1127, (1996)
[11] Cutler, S. J., Refugee crisis and re-emergence of forgotten infections in Europe, Clin. Microbiol. Infect., 22, 8-9, (2016)
[12] Cutler, S. J., Relapsing fever borreliae: a global review, Clin. Lab. Med., 35, 847-865, (2015)
[13] Darcis, G.; Hayette, M. P.; Bontems, S.; Sauvage, A. S.; Meuris, C.; Van Esbroeck, M.; Leonard, P., Louse-borne relapsing fever in a refugee from Somalia arriving in Belgium, J. Travel Med., 23, 1-3, (2016)
[14] Davidson, A. L.; Shuman, H. A.; Nikaido, H., Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins, Proc. Natl. Acad. Sci. U S A, 89, 2360-2364, (1992)
[15] Deka, R. K.; Brautigam, C. A.; Biddy, B. A.; Liu, W. Z.; Norgard, M. V., Evidence for an ABC-type riboflavin transporter system in pathogenic spirochetes, MBio., (2013)
[16] Deka, R. K.; Brautigam, C. A.; Yang, X. F.; Blevins, J. S.; Machius, M.; Tomchick, D. R.; Norgard, M. V., The PnrA (Tp0319; TmpC) lipoprotein represents a new family of bacterial purine nucleoside receptor encoded within an ATP-binding cassette (ABC)-like operon in Treponema pallidum, J. Biol. Chem., (2006)
[17] Dobrikova, E. Y.; Bugrysheva, J.; Cabello, F. C., Two independent transcriptional units control the complex and simultaneous expression of the Bmp paralogous chromosomal gene family in Borrelia burgdorferi, Mol. Microbiol., 39, 370-378, (2001)
[18] Dowdell, A. S.; Murphy, M. D.; Azodi, C.; Swanson, S. K.; Florens, L.; Chen, S.; Zückert, W. R., Comprehensive spatial analysis of the Borrelia burgdorferi lipoproteome reveals a compartmentalization bias toward the bacterial surface, J. Bacteriol., (2017)
[19] Felsenstein, J., Confidence limits on phylogenies : an approach using the bootstrap, Evolution, 39, 783-791, (1985), Author(s): Joseph Felsenstein Published by : Society for the Study of Evolution Stable
[20] Finn, R. D.; Attwood, T. K.; Babbitt, P. C.; Bateman, A.; Bork, P.; Bridge, A. J.; Chang, H. Y.; Dosztanyi, Z.; El-Gebali, S.; Fraser, M.; Gough, J.; Haft, D.; Holliday, G. L.; Huang, H.; Huang, X.; Letunic, I.; Lopez, R.; Lu, S.; Marchler-Bauer, A.; Mi, H.; Mistry, J.; Natale, D. A.; Necci, M.; Nuka, G.; Orengo, C. A.; Park, Y.; Pesseat, S.; Piovesan, D.; Potter, S. C.; Rawlings, N. D.; Redaschi, N.; Richardson, L.; Rivoire, C.; Sangrador-Vegas, A.; Sigrist, C.; Sillitoe, I.; Smithers, B.; Squizzato, S.; Sutton, G.; Thanki, N.; Thomas, P. D.; Tosatto, S. C.E.; Wu, C. H.; Xenarios, I.; Yeh, L. S.; Young, S. Y.; Mitchell, A. L., InterPro in 2017—beyond protein family and domain annotations, Nucleic Acids Res., 45, D190-D199, (2017)
[21] Fiser, A., Template-based protein structure modeling, Methods Mol. Biol., 673, 73-94, (2010)
[22] França, T. C.C., Homology modeling: an important tool for the drug discovery, J. Biomol. Struct. Dyn., 33, 1780-1793, (2015)
[23] Fraser, C. M.; Casjens, S.; Huang, W. M.; Sutton, G. G.; Clayton, R.; Lathigra, R.; White, O.; Ketchum, K. A.; Dodson, R.; Hickey, E. K.; Gwinn, M.; Dougherty, B.; Tomb, J. F.; Fleischmann, R. D.; Richardson, D.; Peterson, J.; Kerlavage, A. R.; Quackenbush, J.; Salzberg, S.; Hanson, M.; Van Vugt, R.; Palmer, N.; Adams, M. D.; Gocayne, J.; Weidman, J.; Utterback, T.; Watthey, L.; McDonald, L.; Artiach, P.; Bowman, C.; Garland, S.; Fujii, C.; Cotton, M. D.; Horst, K.; Roberts, K.; Hatch, B.; Smith, H. O.; Venter, J. C., Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi, Nature, 390, 580-586, (1997)
[24] Fraser, C. M.; Norris, S. J.; Weinstock, G. M.; White, O.; Sutton, G. G.; Dodson, R.; Gwinn, M.; Hickey, E. K.; Clayton, R.; Ketchum, K. A.; Sodergren, E.; Hardham, J. M.; McLeod, M. P.; Salzberg, S.; Peterson, J.; Khalak, H.; Richardson, D.; Howell, J. K.; Chidambaram, M.; Utterback, T.; McDonald, L.; Artiach, P.; Bowman, C.; Cotton, M. D.; Fujii, C.; Hatch, B.; Roberts, K.; Sandusky, M.; Weidman, J.; Smith, H. O.; Venter, J. C., Complete genome sequence of Treponema pallidum, the syphilis spirochete, Science, 281, 375-388, (1998), (80-.)
[25] Gorbacheva, V. Y.; Godfrey, H. P.; Cabello, F. C., Analysis of the Bmp gene family in Borrelia burgdorferi sensu lato, J. Bacteriol., 182, 2037-2042, (2000)
[26] Gupta, R. S.; Mahmood, S.; Adeolu, M., A phylogenomic and molecular signature based approach for characterization of the phylum spirochaetes and its major clades: proposal for a taxonomic revision of the phylum, Front. Microbiol., 4, 1-18, (2013)
[27] Hillis, D. M.; Bull, J. J., Society of Systematic Biologists an Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis, 42, 182-192, (2010), Oxford University Press for the Society of Systematic Biologists Stable
[28] Hovius, J. W.R.; van Dam, A. P.; Fikrig, E., Tick-host-pathogen interactions in Lyme borreliosis, Trends Parasitol., 23, 434-438, (2007)
[29] Hubálek, Z., Epidemiology of Lyme Borreliosis, Curr. Probl. Dermatol., 37, 31-50, (2009)
[30] Hytönen, J.; Khawaja, T.; Grönnroos, J. O.; Jalava, A.; Meri, S.; Oksi, J., Louse-borne relapsing fever in Finland in two asylum seekers from Somalia, APMIS, 125, 59-62, (2017)
[31] Illergård, K.; Ardell, D. H.; Elofsson, A., Structure is three to ten times more conserved than sequence—A study of structural response in protein cores, Proteins Struct. Funct. Bioinform., 77, 499-508, (2009)
[32] Johnson, M. S.; Lehtonen, J. V., Comparision of protein three-dimensional structures, Bioinformatics: Sequence, Structure and Databanks, 15, (2000)
[33] Jones, D. T., Protein secondary structure prediction based on position-specific scoring matrices, J. Mol. Biol., 292, 195-202, (1999)
[34] Juncker, A.; Willenbrock, H., Prediction of lipoprotein signal peptides in gram negative bacteria, Protein Sci., 12, 1652-1662, (2003)
[35] Krissinel, E.; Henrick, K., Inference of macromolecular assemblies from crystalline state, J. Mol. Biol., 372, 774-797, (2007)
[36] Kuehn, B. M., CDC estimates 3,00,000 US cases of Lyme disease annually, JAMA, 310, 1110, (2013)
[37] Kumar, S.; Stecher, G.; Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33, 1870-1874, (2016)
[38] Le, S. Q.; Gascuel, O., An improved general amino acid replacement matrix, Mol. Biol. Evol., 25, 1307-1320, (2008)
[39] Lehtonen, J. V.; Still, D.-J.; Rantanen, V.-V.; Ekholm, J.; Björklund, D.; Iftikhar, Z.; Huhtala, M.; Repo, S.; Jussila, A.; Jaakkola, J.; Pentikäinen, O.; Nyrönen, T.; Salminen, T.; Gyllenberg, M.; Johnson, M. S., BODIL: a molecular modeling environment for structure-function analysis and drug design, J. Comput. Aided Mol. Des., 18, 401-419, (2004)
[40] Lescot, M.; Audic, S.; Robert, C.; Nguyen, T. T.; Blanc, G.; Cutler, S. J.; Wincker, P.; Couloux, A.; Claverie, J. M.; Raoult, D.; Drancourt, M., The genome of Borrelia recurrentis, the agent of deadly louse-borne relapsing fever, is a degraded subset of tick-borne Borrelia duttonii, PLoS Genet., 4, (2008)
[41] Liang, F. T.; Nelson, F. K.; Fikrig, E., Molecular adaptation of Borrelia burgdorferi in the murine host, J. Exp. Med., 196, 275-280, (2002)
[42] Liu, C. E.; Liu, P. Q.; Wolf, A.; Lin, E.; Ames, G. F.L., Both lobes of the soluble receptor of the periplasmic histidine permease, an ABC transporter (traffic ATPase), interact with the membrane- bound complex, J. Biol. Chem., 274, 739-747, (1999)
[43] Maghrabi, A. H.A.; Mcguffin, L. J., ModFOLD6: an accurate web server for the global and local quality estimation of 3D protein models, Nucleic Acids Res., 45, (2017)
[44] Mao, B.; Pear, M. R.; McCammon, J. A.; Quiocho, F. A., Hinge-bending in L-arabinose-binding protein, J. Biol. Chem., 257, 1131-1134, (1982)
[45] Maqbool, A.; Horler, R. S.P.; Muller, A.; Wilkinson, A. J.; Wilson, K. S.; Thomas, G. H., The substrate-binding protein in bacterial ABC transporters: dissecting roles in the evolution of substrate specificity, Biochem. Society Trans., 43, 1011-1017, (2015)
[46] Nordstrand, A.; Bunikis, I.; Larsson, C.; Tsogbe, K.; Schwan, T. G.; Nilsson, M.; Bergström, S., Tickborne relapsing fever diagnosis obscured by Malaria, Togo, Emerg. Infect. Dis., 13, 117-123, (2007)
[47] Pal, U.; Wang, P.; Bao, F.; Yang, X.; Samanta, S.; Schoen, R.; Wormser, G. P.; Schwartz, I.; Fikrig, E., Borrelia burgdorferi basic membrane proteins A and B participate in the genesis of Lyme arthritis, J. Exp. Med., 205, 133-141, (2008)
[48] Pearson, W. R., An introduction to sequence similarity (“homology”) searching, Curr. Protoc. Bioinform., 1-8, (2013)
[49] Pettersson, J.; Schrumpf, M. E.; Raffel, S. J.; Porcella, S. F.; Guyard, C.; Lawrence, K.; Gherardini, F. C.; Schwan, T. G., Purine salvage pathways among Borrelia species, Infect. Immun., 75, 3877-3884, (2007)
[50] Radolf, J. D.; Caimano, M. J.; Stevenson, B.; Hu, L. T., Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes, Nat. Rev. Microbiol., 10, 87-99, (2012)
[51] Radolf, J. D.; Deka, R. K.; Anand, A.; Šmajs, D.; Norgard, M. V.; Yang, X. F., Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen, Nat. Rev. Microbiol., 14, 744-759, (2016)
[52] Ramamoorthy, R.; McClain, N. A.; Gautam, A.; Scholl-Meeker, D., Expression of the bmpB gene of Borrelia burgdorferi is modulated by two distinct transcription termination events, J. Bacteriol., 187, 2592-2600, (2005)
[53] Ramamoorthy, R.; Povinelli, L.; Philipp, M. T., Molecular characterization, genomic arrangement, and expression of bmpD, a new member of the Bmp class of genes encoding membrane proteins of Borrelia burgdorferi, Infect. Immun., 64, 1259-1264, (1996)
[54] Robert, X.; Gouet, P., Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res., (2014), 42
[55] Rowley, J., Toskin, I., Ndowa, F., 2012. Global incidence and prevalence of selected curable sexually transmitted infections - 2008.
[56] Salentin, S.; Schreiber, S.; Haupt, V. J.; Adasme, M. F.; Schroeder, M., PLIP: fully automated protein - ligand interaction profiler, Nucleic Acids Res., 43, W443-W447, (2015)
[57] Šali, A.; Blundell, T. L., Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol., 234, 779-815, (1993)
[58] Scheepers, G. H.; Lycklama A. Nijeholt, J. A.; Poolman, B., An updated structural classification of substrate-binding proteins, FEBS Lett., 590, 4393-4401, (2016)
[59] Simpson, W. J.; Burgdorfer, W.; Schrumpf, M. E.; Karstens, R. H.; Schwan, T. G., Antibody to a 39-kilodalton Borrelia burgdorferi antigen (P39) as a marker for infection in experimentally and naturally inoculated animals, J. Clin. Microbiol., 29, 236-243, (1991)
[60] Simpson, W. J.; Cieplak, W.; Schrumpf, M. E.; Barbour, A. G.; Schwan, T. G., Nucleotide sequence and analysis of in Borrelia burgdorferi encoding the P39 antigen the gene immunogenic, FEMS Microbiol. Lett., 119, 381-388, (1994)
[61] Simpson, W. J.; Schrumpf, M. E.; Schwan, T. G., Reactivity of human Lyme borreliosis sera with a 39-kilodalton antigen specific to Borrelia burgdorferi, J. Clin. Microbiol., 28, 1329-1337, (1990)
[62] Sippl, M. J., Recognition of errors in three dimensional structures of proteins, Proteins Struct. Funct. Bioinform., (1993)
[63] Soltis, D.E., Soltis, P.S., 2014. Update on Molecular Systematics The Role of Phylogenetics in Comparative Genetics 1 132, 1790-1800. https://doi.org/10.1104/pp.103.022509.and
[64] Soltis, D. E.; Soltis, P. S., Applying the bootstrap in phylogeny reconstruction, Stat. Sci., 18, 256-267, (2003) · Zbl 1331.62441
[65] Sykes, R. A.; Makiello, P., An estimate of Lyme borreliosis incidence in Western Europe, Res Medica, 22, 76, (2014)
[66] Verma, A.; Brissette, C. A.; Bowman, A.; Stevenson, B., Borrelia burgdorferi bmpA is a laminin-binding protein, Infect. Immun., 77, 4940-4946, (2009)
[67] Wallner, B.; Elofsson, A., Can correct protein models be identified?, Protein Sci., 12, 1073-1086, (2003)
[68] Wiederstein, M.; Sippl, M. J., ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucleic Acids Res., 35, 407-410, (2007)
[69] Yang, X.; Izadi, H.; Coleman, A. S.; Wang, P.; Ma, Y.; Fikrig, E.; Anguita, J.; Pal, U., Borrelia burgdorferi lipoprotein bmpA activates pro-inflammatory responses in human synovial cells through a protein moiety, Microbes Infect., 10, 1300-1308, (2008)
[70] Zhao, H.; Liu, A.; Cui, Y.; Liang, Z.; Li, B.; Bao, F., Borrelia burgdorferi basic membrane protein A could induce chemokine production in murine microglia cell line BV2, Microb. Pathog., 111, 174-181, (2017)
[71] Zückert, W. R., Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond, Biochim. Biophys. Acta, 1843, 1509-1516, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.