×

zbMATH — the first resource for mathematics

Analysis and prediction of animal toxins by various Chou’s pseudo components and reduced amino acid compositions. (English) Zbl 1406.92205
Summary: The animal toxin proteins are one of the disulfide rich small peptides that detected in venomous species. They are used as pharmacological tools and therapeutic agents in medicine for the high specificity of their targets. The successful analysis and prediction of toxin proteins may have important signification for the pharmacological and therapeutic researches of toxins. In this study, significant differences were found between the toxins and the non-toxins in amino acid compositions and several important biological properties. The random forest was firstly proposed to predict the animal toxin proteins by selecting 400 pseudo amino acid compositions and the dipeptide compositions of reduced amino acid alphabet as the input parameters. Based on dipeptide composition of reduced amino acid alphabet with 13 reduced amino acids, the best overall accuracy of 85.71% was obtained. These results indicated that our algorithm was an efficient tool for the animal toxin prediction.
MSC:
92C40 Biochemistry, molecular biology
68T05 Learning and adaptive systems in artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aboderin, A. A., An empirical hydrophobicity scale for α-amino-acids and some of its applications, Int. J. Biochem., 2, 537-544, (1971)
[2] Arif, M.; Hayat, M.; Jan, Z., iMem-2LSAAC: A two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition, J. Theor. Biol., 442, 11-21, (2018) · Zbl 1397.92180
[3] Bischof, J. C.; He, X. M., Thermal stability of proteins, Ann. N Y Acad. Sci., 1066, 12-33, (2006)
[4] Boeckmann, B.; Bairoch, A.; Apweiler, R.; Blatter, M. C.; Estreicher, A.; Gasteiger, E.; Martin, M. J.; Michoud, K.; O’Donovan, C.; Phan, I., The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003, Nucleic Acids Res., 31, 365-370, (2003)
[5] Breiman, L., Random forests, Mach. Learn., 45, 5-32, (2001) · Zbl 1007.68152
[6] Butt, A. H.; Rasool, N.; Khan, Y. D., Predicting membrane proteins and their types by extracting various sequence features into Chou’s general PseAAC, Mol. Biol. Rep., (2018), Epub ahead of print
[7] Cai, L.; Huang, T.; Su, J.; Zhang, X.; Chen, W.; Zhang, F.; He, L.; Chou, K.-C., Implications of newly identified brain eQTL genes and their interactors in schizophrenia, Mol. Ther. Nucleic Acids, 12, 433-442, (2018)
[8] Cai, Y. D.; Chou, K. C., Nearest neighbour algorithm for predicting protein subcellular location by combining functional domain composition and pseudo-amino acid composition, Biochem. Biophys. Res. Commun., 305, 407-411, (2003)
[9] Calvete, J. J.; Sanz, L.; Angulo, Y.; Lomonte, B.; Gutiérrez, J. M., Venoms, venomics, antivenomics, FEBS Lett., 583, 1736-1743, (2009)
[10] Chang, C. C.; Lin, C. J., LIBSVM: a library for support vector machines, ACM Transact. Intell. Syst. Technol., 2, 1-27, (2011)
[11] Chen, W.; Feng, P.; Lin, H., Prediction of ketoacyl synthase family using reduced amino acid alphabets, J Ind. Microbiol. Biotechnol., 39, 579-584, (2012)
[12] Chen, W.; Feng, P. M.; Lin, H.; Chou, K. C., iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition, Nucleic Acids Res., 41, (2013)
[13] Chen, W.; Lei, T. Y.; Jin, D. C.; Lin, H.; Chou, K. C., PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition, Anal. Biochem., 456, 53-60, (2014)
[14] Chen, W.; Ding, H.; Zhou, X.; Lin, H.; Chou, K. C., iRNA(m6A)-PseDNC: identifying N6-methyladenosine sites using pseudo dinucleotide composition, Anal. Biochem., 561-562, 59-65, (2018)
[15] Chen, W.; Feng, P. M.; Yang, H.; Ding, H.; Lin, H.; Chou, K. C., iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences, Oncotarget, 8, 4208-4217, (2017)
[16] Chen, W.; Feng, P. M.; Yang, H.; Ding, H.; Lin, H.; Chou, K. C., iRNA-3typeA: identifying three types of modification at RNA’s adenosine sites, Mol. Ther. Nucleic Acids, 11, 468-474, (2018)
[17] Chen, Y. L.; Li, Q. Z.; Zhang, L. Q., Using increment of diversity to predict mitochondrial proteins of malaria parasite: integrating pseudo-amino acid composition and structural alphabet, Amino Acids, 42, 1309-1316, (2012)
[18] Chen, Z.; Zhao, P.; Li, F.; Leier, A.; Marquez-Lago, T. T.; Wang, Y.; Webb, G. I.; Smith, A. I.; Daly, R. J.; Chou, K.-C.; Song, J., iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences, Bioinformatics, 34, 2499-2502, (2018)
[19] Cheng, X.; Xiao, X.; Chou, K. C., pLoc-mGneg: predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC, Genomics, (2017)
[20] Cheng, X.; Xiao, X.; Chou, K. C., pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC, Mol. Biosyst., 13, 1722-1727, (2017)
[21] Cheng, X.; Xiao, X.; Chou, K. C., pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC, Gene, 628, 315-321, (2017)
[22] Cheng, X.; Xiao, X.; Chou, K. C., pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC, J. Theor. Biol., 458, 92-102, (2018)
[23] Cheng, X.; Xiao, X.; Chou, K. C., pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information, Bioinformatics, 34, 1448-1456, (2018)
[24] Cheng, X.; Xiao, X.; Chou, K. C., pLoc-mEuk: predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC, Genomics, 110, 50-58, (2018)
[25] Cheng, X.; Zhao, S. G.; Xiao, X.; Chou, K. C., iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals, Oncotarget, 8, 58494-58503, (2017)
[26] Cheng, X.; Zhao, S. G.; Xiao, X.; Chou, K. C., iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals, Bioinformatics, 33, 341-346, (2017)
[27] Cheng, X.; Lin, W.-Z.; Xiao, X.; Chou, K.-C., pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC, Bioinformatics, (2018), bty628-bty628
[28] Cheng, X.; Zhao, S. G.; Lin, W. Z.; Xiao, X.; Chou, K. C., pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites, Bioinformatics, 33, 3524-3531, (2017)
[29] Chou, K. C., Prediction of signal peptides using scaled window, Peptides, 22, 1973-1979, (2001)
[30] Chou, K. C., Prediction of protein cellular attributes using pseudo-amino acid composition, Proteins, 43, 246-255, (2001)
[31] Chou, K. C., Using subsite coupling to predict signal peptides, Protein Eng., 14, 75-79, (2001)
[32] Chou, K. C., Prediction of protein signal sequences, Curr. Protein Pept. Sci., 3, 615-622, (2002)
[33] Chou, K. C., Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes, Bioinformatics, 21, 10-19, (2005)
[34] Chou, K. C., Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology, Curr. Proteomics, 6, 262-274, (2009)
[35] Chou, K. C., Some remarks on protein attribute prediction and pseudo amino acid composition, J. Theor. Biol., 273, 236-247, (2011) · Zbl 1405.92212
[36] Chou, K. C., Some remarks on predicting multi-label attributes in molecular biosystems, Mol. Biosyst., 9, 1092-1100, (2013)
[37] Chou, K. C., Impacts of bioinformatics to medicinal chemistry, Med. Chem., 11, 218-234, (2015)
[38] Chou, K. C., An unprecedented revolution in medicinal chemistry driven by the progress of biological science, Curr. Top. Med. Chem., 17, 2337-2358, (2017)
[39] Chou, K. C.; Elrod, D. W., Bioinformatical analysis of G-protein-coupled receptors, J. Proteome Res., 1, 429-433, (2002)
[40] Chou, K. C.; Cai, Y. D., Prediction and classification of protein subcellular location-sequence-order effect and pseudo amino acid composition, J. Cell. Biochem., 90, 1250-1260, (2003)
[41] Chou, K. C.; Shen, H. B., Reveiw: recent advances in developing web-servers for predicting protein attributes, Nat. Sci., 1, 63-92, (2009)
[42] Chou, K. C.; Cheng, X.; Xiao, X., pLoc_bal-mHum: predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset, Genomics, (2018)
[43] Da Silva, S. L.; Rowan, E. G.; Albericio, F.; Stábeli, R. G.; Calderon, L. A.; Soares, A. M., Animal toxins and their advantages in biotechnology and pharmacology, Biomed Res. Int., 2014, 2, (2014)
[44] Ding, H.; Deng, E. Z.; Yuan, L. F.; Liu, L.; Lin, H.; Chen, W.; Chou, K. C., iCTX-Type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels, Biomed Res. Int., 2014, (2014)
[45] Ehsan, A.; Mahmood, K.; Khan, Y. D.; Khan, S. A.; Chou, K.-C., A novel modeling in mathematical biology for classification of signal peptides, Sci. Rep., 8, 1039, (2018)
[46] Fan, Y. X.; Song, J.; Shen, H. B.; Kong, X., PredCSF: an integrated feature-based approach for predicting conotoxin superfamily, Protein Pept. Lett., 18, 261-267, (2011)
[47] Feng, P. M.; Chen, W.; Lin, H.; Chou, K. C., iHSP-PseRAAAC: identifying the heat shock protein families using pseudo reduced amino acid alphabet composition, Anal. Biochem., 442, 118-125, (2013)
[48] Feng, P. M.; Ding, H.; Yang, H.; Chen, W.; Lin, H.; Chou, K. C., iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC, Mol. Ther. Nucleic Acids, 7, 155-163, (2017)
[49] Feng, P. M.; Yang, H.; Ding, H.; Lin, H.; Chen, W.; Chou, K. C., iDNA6mA-PseKNC: identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC, Genomics, (2018)
[50] Frank, E.; Hall, M.; Trigg, L.; Holmes, G.; Witten, I. H., Data mining in bioinformatics using Weka, Bioinformatics, 20, 2479-2481, (2004)
[51] Guruprasad, K.; Reddy, B. V.B.; Pandit, M. W., Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence, Protein Eng., 4, 22-161, (1990)
[52] Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W., CD-HIT suite: a web server for clustering and comparing biological sequences, Bioinformatics, 26, 680-682, (2010)
[53] Huo, H.; Li, T.; Wang, S.; Lv, Y.; Zuo, Y.; Yang, L., Prediction of presynaptic and postsynaptic neurotoxins by combining various Chou’s pseudo components, Sci. Rep., 7, 5827, (2017)
[54] Ikai, A., Thermostability and aliphatic index of globular proteins, J. Biochem., 88, 1895-1898, (1980)
[55] Javed, F.; Hayat, M., Predicting subcellular localization of multi-label proteins by incorporating the sequence features into Chou’s PseAAC, Genomics, (2018)
[56] Jia, J. H.; Liu, Z.; Xiao, X.; Liu, B. X.; Chou, K. C., iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset, Anal. Biochem., 497, 48-56, (2016)
[57] Jia, J. H.; Liu, Z.; Xiao, X.; Liu, B. X.; Chou, K. C., pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach, J. Theor. Biol., 394, 223-230, (2016) · Zbl 1343.92153
[58] Jia, J. H.; Li, X. Y.; Qiu, W. R.; Xiao, X.; Chou, K. C., iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC, J. Theor. Biol., 460, 195-203, (2019)
[59] Kohonen, J.; Talikota, S.; Corander, J.; Auvinen, P.; Arjas, E., A Naive Bayes classifier for protein function prediction, In Silico Biol., 9, 23-34, (2009)
[60] Laxton, R. R., The measure of diversity, J. Theor. Biol., 70, 51-67, (1978)
[61] Li, F.; Li, C.; Marquez-Lago, T. T.; Leier, A.; Akutsu, T.; Purcell, A. W.; Ian Smith, A.; Lithgow, T.; Daly, R. J.; Song, J.; Chou, K.-C., Quokka: a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome, Bioinformatics, (2018), bty522-bty522
[62] Li Ming, L.; Yan, X.; Kuo Chen, C., iPGK-PseAAC: identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC, Med. Chem., 13, 552-559, (2017)
[63] Lin, H.; Li, Q. Z., Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified Mahalanobis discriminant, Biochem. Biophys. Res. Commun., 354, 548-551, (2007)
[64] Lin, H.; Deng, E. Z.; Ding, H.; Chen, W.; Chou, K. C., iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition, Nucleic Acids Res., 42, 12961-12972, (2014)
[65] Liu, B.; Long, R.; Chou, K. C., iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework, Bioinformatics, 32, 2411-2418, (2016)
[66] Liu, B.; Wu, H.; Chou, K. C., Pse-in-One 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences, Nat. Sci., 09, 67-91, (2017)
[67] Liu, B.; Yang, F.; Chou, K. C., 2L-piRNA: a two-layer ensemble classifier for identifying piwi-interacting RNAs and their function, Mol. Ther. Nucleic Acids, 7, 267-277, (2017)
[68] Liu, B.; Wang, S. Y.; Long, R.; Chou, K. C., iRSpot-EL: identify recombination spots with an ensemble learning approach, Bioinformatics, 33, 35-41, (2017)
[69] Liu, B.; Weng, F.; Huang, D. S.; Chou, K. C., iRO-3wPseKNC: identify DNA replication origins by three-window-based PseKNC, Bioinformatics, bty312, (2018)
[70] Liu, B.; Yang, F.; Huang, D. S.; Chou, K. C., iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC, Bioinformatics, 34, 33-40, (2018)
[71] Liu, B.; Li, K.; Huang, D. S.; Chou, K. C., iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach, Bioinformatics, bty458, (2018)
[72] Liu, B.; Fang, L. Y.; Long, R.; Lan, X.; Chou, K. C., iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition, Bioinformatics, 32, 362-369, (2016)
[73] Liu, B.; Liu, F. L.; Wang, X. L.; Chen, J. J.; Fang, L. Y.; Chou, K. C., Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences, Nucleic Acids Res., 43, W65-W71, (2015)
[74] Liu, B.; Fang, L. Y.; Liu, F.; Wang, X. L.; Chen, J. J.; Chou, K. C., Identification of real MicroRNA precursors with a pseudo structure status composition approach, PLoS One, 10, (2015)
[75] Liu, D. Y.; Li, G. P.; Zuo, Y. C., Function determinants of TET proteins: the arrangements of sequence motifs with specific codes, Brief. Bioinform., (2018), bby053-bby053
[76] Mondal, S.; Bhavna, R.; Mohan Babu, R.; Ramakumar, S., Pseudo amino acid composition and multi-class support vector machines approach for conotoxin superfamily classification, J. Theor. Biol., 243, 252-260, (2006)
[77] Naamati, G.; Askenazi, M.; Linial, M., ClanTox: a classifier of short animal toxins, Nucleic Acids Res., 37, W363-W368, (2009)
[78] Qiu, W. R.; Sun, B. Q.; Xiao, X.; Xu, Z. C.; Chou, K. C., iPTM-mLys: identifying multiple lysine PTM sites and their different types, Bioinformatics, 32, 3116-3123, (2016)
[79] Qiu, W. R.; Jiang, S. Y.; Xu, Z. C.; Xiao, X.; Chou, K. C., iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition, Oncotarget, 8, 41178-41188, (2017)
[80] Qiu, W. R.; Sun, B. Q.; Xiao, X.; Xu, D.; Chou, K. C., iPhos-PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory, Mol. Inform., 36, 201600010, (2017)
[81] Qiu, W. R.; Sun, B. Q.; Xiao, X.; Xu, Z. C.; Jia, J. H.; Chou, K. C., iKcr-PseEns: identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier, Genomics, (2017)
[82] Saha, S.; Raghava, G. P., BTXpred: prediction of bacterial toxins, In Silico Biol., 7, 405-412, (2007)
[83] Saha, S.; Raghava, G. P., Prediction of neurotoxins based on their function and source, In Silico Biol., 7, 369-387, (2007)
[84] Shanbhag, V. K.L., Applications of snake venoms in treatment of cancer, Asian Pac. J. Trop. Biomed., 5, 275-276, (2015)
[85] Song, J.; Li, F.; Leier, A.; Marquez-Lago, T. T.; Akutsu, T.; Haffari, G.; Chou, K.-C.; Webb, G. I.; Pike, R. N., Prosperous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy, Bioinformatics, 34, 684-687, (2018)
[86] Song, J. N.; Li, F.; Takemoto, K.; Haffari, G.; Akutsu, T.; Chou, K. C.; Webb, G. I., PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework, J. Theor. Biol., 443, 125-137, (2018)
[87] Song, J. N.; Wang, Y. N.; Li, F. Y.; Akutsu, T.; Rawlings, N. D.; Webb, G. I.; Chou, K. C., iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites, Brief. Bioinform., bby028, (2018)
[88] Su, Z. D.; Huang, Y.; Zhang, Z. Y.; Zhao, Y. W.; Wang, D.; Chen, W.; Chou, K. C.; Lin, H., iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC, Bioinformatics, (2018), bty508-bty508
[89] Tirosh, Y.; Linial, I.; Askenazi, M.; Linial, M., Short toxin-like proteins abound in Cnidaria genomes, Toxins, 4, 1367-1384, (2012)
[90] Wang, J.; Yang, B.; Revote, J.; Leier, A.; Marquez-Lago, T. T.; Webb, G.; Song, J.; Chou, K.-C.; Lithgow, T., POSSUM: a bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles, Bioinformatics, 33, 2756-2758, (2017)
[91] Wang, J.; Yang, B.; Leier, A.; Marquez-Lago, T. T.; Hayashida, M.; Rocker, A.; Zhang, Y.; Akutsu, T.; Chou, K.-C.; Strugnell, R. A.; Song, J.; Lithgow, T., Bastion6: a bioinformatics approach for accurate prediction of type VI secreted effectors, Bioinformatics, 34, 2546-2555, (2018)
[92] Xiao, X.; Cheng, X.; Su, S. C.; Mao, Q.; Chou, K. C., pLoc-mGpos: Incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins, Nat. Sci., 9, 330, (2017)
[93] Xiao, X.; Cheng, X.; Chen, G.; Mao, Q.; Chou, K.-C., pLoc_bal-mGpos: predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC, Genomics, (2018)
[94] Yan, X.; Zu, W.; Chunhui, L.; Kuo Chen, C., iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC, Med. Chem., 13, 544-551, (2017)
[95] Yang, H.; Qiu, W. R.; Liu, G. Q.; Guo, F. B.; Chen, W.; Chou, K. C.; Lin, H., iRSpot-Pse6NC: identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC, Int. J. Biol. Sci., 14, 883-891, (2018)
[96] Yang, L.; Li, Q., Prediction of presynaptic and postsynaptic neurotoxins by the increment of diversity, Toxicol. In Vitro, 23, 346-348, (2009)
[97] Yin, J. B.; Fan, Y. X.; Shen, H. B., Conotoxin superfamily prediction using diffusion maps dimensionality reduction and subspace classifier, Curr. Protein Pept. Sci., 12, 580-588, (2011)
[98] Zhang, C. J.; Tang, H.; Li, W. C.; Lin, H.; Chen, W.; Chou, K. C., iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition, Oncotarget, 7, 69783-69793, (2016)
[99] Zhang, L.; Luo, L., Splice site prediction with quadratic discriminant analysis using diversity measure, Nucleic Acids Res., 31, 6214-6220, (2003)
[100] Zuo, Y. C.; Li, Q. Z., Using reduced amino acid composition to predict defensin family and subfamily: integrating similarity measure and structural alphabet, Peptides, 30, 1788-1793, (2009)
[101] Zuo, Y. C.; Li, Q. Z., Using K-minimum increment of diversity to predict secretory proteins of malaria parasite based on groupings of amino acids, Amino Acids, 38, 859-867, (2010)
[102] Zuo, Y. C.; Lv, Y.; Wei, Z. Y.; Yang, L.; Li, G. P.; Fan, G. L., iDPF-PseRAAAC: a web-server for identifying the defensin peptide family and subfamily using pseudo reduced amino acid alphabet composition, PLoS One, 10, (2016)
[103] Zuo, Y. C.; Li, Y.; Chen, Y. L.; Li, G. P.; Yan, Z. H.; Yang, L., PseKRAAC: a flexible web server for generating pseudo K-tuple reduced amino acids composition, Bioinformatics, 33, 122-124, (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.