×

zbMATH — the first resource for mathematics

Predicting protein-protein interactions by fusing various Chou’s pseudo components and using wavelet denoising approach. (English) Zbl 1406.92218
Summary: Research on protein-protein interactions (PPIs) not only helps to reveal the nature of life activities but also plays a driving role in understanding the mechanisms of disease activity and the development of effective drugs. The rapid development of machine learning provides new opportunities and challenges for understanding the mechanism of PPIs. It plays an important role in the field of proteomics research. In recent years, an increasing number of computational methods for predicting PPIs have been developed. This paper proposes a new method for predicting PPIs based on multi-information fusion. First, the pseudo-amino acid composition (PseAAC), auto-covariance (AC) and encoding based on grouped weight (EBGW) methods are used to extract the features of protein sequences, and the extracted three groups of feature vectors were fused. Secondly, the fused feature vectors are denoised by two-dimensional (2-D) wavelet denoising. Finally, the denoised feature vectors are input to the support vector machine (SVM) classifier to predict the PPIs. The ACC of PPIs of Helicobacter pylori (H. pylori) and Saccharomyces cerevisiae datasets were 95.97% and 95.55% by 5-fold cross-validation test and compared with other prediction methods. The experimental results show that the proposed multi-information fusion prediction method can effectively improve the prediction performance of PPIs. The source code and all datasets are available at https://github.com/QUST-AIBBDRC/PPIs-WDSVM/.
MSC:
92C40 Biochemistry, molecular biology
92D20 Protein sequences, DNA sequences
68T05 Learning and adaptive systems in artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahmad, K.; Waris, M.; Hayat, M., Prediction of protein submitochondrial locations by incorporating dipeptide composition into Chou’s general pseudo amino acid composition, J. Membr. Biol., 249, 293-304, (2016)
[2] An, J.; Meng, F.; You, Z.; Chen, X.; Yan, G.; Hu, J., Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model, Protein Sci, 25, 1825-1833, (2016)
[3] Angermueller, C.; Pärnamaa, T.; Parts, L.; Stegle, O., Deep learning for computational biology, Mol. Syst. Biol., 12, 878, (2016)
[4] Behbahani, M.; Mohabatkar, H.; Nosrati, M., Analysis and comparison of lignin peroxidases between fungi and bacteria using three different modes of Chou’s general pseudo amino acid composition, J. Theor. Biol., 411, 1-5, (2016)
[5] Binny, P. S.; Saha, S.; Anishetty, R.; Anishetty, S., A matrix based algorithm for protein-protein interaction prediction using domain-domain associations, J. Theor. Biol., 326, 36-42, (2013) · Zbl 1322.92011
[6] Bock, J. R.; Gough, D. A., Whole-proteome interaction mining, Bioinformatics, 19, 125-135, (2003)
[7] Chang, C. C.; Lin, C. J., LIBSVM: a library for support machines, ACM Trans. Intell. Syst. Technol., 2, 1-27, (2011)
[8] Chang, S. G.; Yu, B.; Vetterli, M., Adaptive wavelet thresholding for image denoising and compression, IEEE Trans. Image Process., 9, 1532-1546, (2000) · Zbl 0962.94028
[9] Chang, S. G.; Yu, B.; Vetterli, M., Spatially adaptive wavelet thresholding with context modeling for image denoising, IEEE Trans. Image Process., 9, 1522-1531, (2000) · Zbl 0962.94027
[10] Chatterjee, P.; Basu, S.; Kundu, M.; Nasipuri, M.; Plewczynski, D., PPI_SVM: prediction of protein-protein interactions using machine learning, domain-domain affinities and frequency tables, Cell. Mol. Biol. Lett., 16, 264-278, (2011)
[11] Cheng, X.; Xiao, X.; Chou, K. C., pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC, Gene, 628, 315-321, (2017)
[12] Cheng, X.; Zhao, S. G.; Xiao, X.; Chou, K. C., iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals, Oncotarget, 8, 58494-58503, (2017)
[13] Cheng, X.; Zhao, S. G.; Xiao, X.; Chou, K. C., iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals, Bioinformatics, 33, 341-346, (2017)
[14] Cheng, X.; Zhao, S. G.; Lin, W. Z.; Xiao, X.; Chou, K. C., pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites, Bioinformatics, 33, 3524-3531, (2017)
[15] Cheng, X.; Xiao, X.; Chou, K. C., pLoc-mEuk: predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC, Genomics, 110, 50-58, (2017)
[16] Cheng, X.; Xiao, X.; Chou, K. C., pLoc-mGneg: predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC, Genomics, 7543, 30102-30107, (2017)
[17] Cheng, X.; Xiao, X.; Chou, K. C., pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information, Bioinformatics, 34, 1448-1456, (2017)
[18] Cheng, X.; Xiao, X., pLoc-mPlant: predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC, Mol. BioSyst., 13, 1722-1727, (2017)
[19] Cheng, X.; Lin, W. Z.; Xiao, X.; Chou, K. C., pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC, Bioinformatics, (2018)
[20] Cheng, X.; Xiao, X.; Chou, K. C., pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC, J. Theor. Biol., 458, 92-102, (2018)
[21] Cheng, X.; Xiao, X.; Chou, K. C., pLoc-mEuk: predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC, Genomics, 110, 50-58, (2018)
[22] Chen, W.; Ding, H.; Zhou, X.; Lin, H.; Chou, K. C., iRNA(m6A)-PseDNC: identifying N6-methyladenosine sites using pseudo dinucleotide composition, Anal. Biochem., 561-562, 59-65, (2018), 15
[23] Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K. C., iRNA-3typeA: identifying 3-types of modification at RNA’s adenosine sites, Mol. Ther. Nucleic Acids, 11, 468-474, (2018)
[24] Chen, W.; Feng, P. M.; Lin, H.; Chou, K. C., iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition, Nucleic Acids Res., 41, e68, (2013)
[25] Chen, W.; Lei, T. Y.; Jin, D. C.; Lin, H.; Chou, K. C., PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition, Anal. Biochem., 456, 53-60, (2014)
[26] Chou, K. C., Prediction of protein cellular attributes using pseudo-amino acid composition, Proteins, 44, 246-255, (2001)
[27] Chou, K. C., Prediction of signal peptides using scaled window, Peptides, 22, 1973-1979, (2001)
[28] Chou, K. C., Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes, Bioinformatics, 21, 10-19, (2005)
[29] Chou, K. C., Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology, Curr. Proteom., 6, 262-274, (2009)
[30] Chou, K. C., Some remarks on protein attribute prediction and pseudo amino acid composition, J. Theor. Biol., 273, 236-247, (2011) · Zbl 1405.92212
[31] Chou, K. C., Some remarks on predicting multi-label attributes in molecular biosystems, Mol. Biosyst, 9, 1092-1100, (2013)
[32] Chou, K. C., Impacts of bioinformatics to medicinal chemistry, Med. Chem., 11, 218-234, (2015)
[33] Chou, K. C., An unprecedented revolution in medicinal chemistry driven by the progress of biological science, Curr. Top. Med. Chem., 17, 2337-2358, (2017)
[34] Chou, K. C.; Cai, Y. D., Predicting protein-protein interactions from sequences in a hybridization space, J. Proteome Res., 5, 316-322, (2006)
[35] Chou, K. C.; Cheng, X.; Xiao, X., pLoc_bal-mHum: Predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset, Genomics, (2018)
[36] Chou, K. C.; Jia, J.; Liu, Z.; Xiao, X.; Liu, B., Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition, J. Biomol. Struct. Dyn., 34, 1946-1961, (2016)
[37] Chou, K. C.; Shen, H. B., Recent progress in protein subcellular location prediction, Anal. Biochem., 370, 1-16, (2007)
[38] Chou, K. C.; Shen, H. B., Recent advances in developing web-servers for predicting protein attributes, Nat. Sci., 1, 63-92, (2009)
[39] Chou, K. C.; Wu, Z. C.; Xiao, X., iLoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites, Mol. Biosyst., 8, 629-641, (2012)
[40] Daberdaku, S.; Ferrari, C., Exploring the potential of 3D Zernike descriptors and SVM for protein-protein interface prediction, BMC Bioinf., 19, 35, (2018)
[41] Dehzangi, A.; Heffernan, R.; Sharma, A.; Lyons, J.; Paliwal, K.; Sattar, A., Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou’s general PseAAC, J. Theor. Biol., 364, 284-294, (2015) · Zbl 1405.92092
[42] Ding, Y.; Tang, J.; Guo, F., Predicting protein-protein interactions via multivariate mutual information of protein sequences, BMC Bioinf., 17, 398, (2016)
[43] Donaldson, I.; Martin, J.; Bruijn, B. D.; Wolting, C.; Lay, V.; Tuekam, B.; Zhang, S.; Baskin, B.; Bader, G. D.; Michalickova, K.; Pawson, T.; Hogue, C. W., Prebind and textomy-mining the biomedical literature for protein-protein interactions using a support vector machine, BMC Bioinf., 4, 11, (2003)
[44] Du, P. F.; Jiao, Y. S., Predicting protein submitochondrial locations by incorporating the positional-specific physicochemical properties into Chou’s general pseudo-amino acid compositions, J. Theor. Biol., 416, 81-87, (2017)
[45] Du, P. F.; Li, Y. D., Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence, BMC Bioinf., 7, 1-8, (2006)
[46] Du, P. F.; Yu, Y., SubMito-PSPCP: predicting protein submitochondrial locations by hybridizing positional specific physicochemical properties with pseudoamino acid compositions, Biomed. Res. Int., 3, (2013)
[47] Du, X.; Sun, S.; Hu, C.; Yu, Y.; Yan, Y.; Zhang, Y., DeepPPI: boosting prediction of protein-protein interactions with deep neural networks, J. Chem. Inf. Model, 57, 1499-1510, (2017)
[48] Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H.; Chou, K. C., iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC, Mol. Ther. Nucleic Acids, 7, 155-163, (2017)
[49] Feng, P. M.; Chen, W.; Lin, H.; Chou, K. C., iHSP-PseRAAAC: identifying the heat shock protein families using pseudo reduced amino acid alphabet composition, Anal. Biochem., 442, 118-125, (2013)
[50] Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W.; Chou, K. C., iDNA6mA-PseKNC: identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC, Genomics, (2018)
[51] Folador, E. L.; Hassan, S. S.; Lemke, N.; Barh, D.; Silva, A.; Ferreira, R. S.; Azevedo, V., An improved interolog mapping-based computational prediction of protein-protein interactions with increased network coverage, Integr. Biol., 6, 1080-1087, (2014)
[52] Gao, Z. G.; Wang, L.; Xia, S. X.; You, Z. H.; Yan, X.; Zhou, Y., Ens-PPI: a novel ensemble classifier for predicting the interactions of proteins using auto covariance transformation from PSSM, Biomed. Res. Int., 2016, (2016), 4563524
[53] Göktepe, Y. E.; Kodaz, H., Prediction of protein-protein interactions using an effective sequence based combined method, Neurocomputing, 303, 68-74, (2018)
[54] Guo, Y.; Li, M.; Lu, M.; Wen, Z.; Huang, Z., Predicting G-protein coupled receptors G-protein coupling specificity based on autocross-covariance transform, Proteins, 65, 55-60, (2006)
[55] Guo, Y.; Yu, L.; Wen, Z.; Li, M., Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences, Nucleic. Acids Res., 36, 3025-3030, (2008)
[56] Hamp, T.; Rost, B., Evolutionary profiles improve protein-protein interaction prediction from sequence, Bioinformatics, 31, 1945-1950, (2015)
[57] Han, J. D.; Dupuy, D.; Bertin, N.; Cusick, M. E.; Vidal, M., Effect of sampling on topology predictions of protein-protein interaction networks, Nat. Biotechnol., 23, 839-944, (2005)
[58] Huang, L.; Liao, L.; Wu, C. H., Protein-protein interaction prediction based on multiple kernels and partial network with linear programming, BMC. Syst. Biol., 10, 45, (2016)
[59] Huang, T.; Chen, L.; Cai, Y. D.; Chou, K. C., Classification and analysis of regulatory pathways using graph property, biochemical and physicochemical property, and functional property, PLoS One, 6, e25297, (2011)
[60] Huang, Y. A.; You, Z. H.; Chen, X.; Yan, G. Y., Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition, BMC Syst. Biol., 10, 485-494, (2016)
[61] Huang, Y. A.; You, Z. H.; Gao, X.; Wong, L.; Wang, L., Using weighted sparse representation model combined with discrete cosine transformation to predict protein-protein interactions from protein sequence, Biomed. Res. Int., 2915, (2015)
[62] Hu, L.; Huang, T.; Shi, X.; Lu, W. C.; Cai, Y. D.; Chou, K. C., Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties, PLoS One, 6, e14556, (2011)
[63] Hu, L. L.; Feng, K. Y.; Cai, Y. D.; Chou, K. C., Using protein-protein interaction network information to predict the subcellular locations of proteins in budding yeast, Protein Pept. Lett., 19, 644-651, (2012)
[64] Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K. C., iPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC, J. Theor. Biol., 377, 47-56, (2015)
[65] Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K. C., Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition, J. Biomol. Struct. Dyn., 34, 1946-1961, (2015)
[66] Jia, J.; Xiao, X.; Liu, B., Prediction of protein-protein interactions with physicochemical descriptors and wavelet transform via random forests, J. Lab. Autom., 21, 368-377, (2015)
[67] Jia, J.; Li, X.; Qiu, W.; Xiao, X.; Chou, K. C., iPPI-PseAAC (CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC, J. Theor. Biol., 60, 195-203, (2018)
[68] Khan, M.; Hayat, M.; Khan, S. A.; Iqbal, N., Unb-DPC: Identify mycobacterial membrane protein types by incorporating un-biased dipeptide composition into Chou’s general PseAAC, J. Theor. Biol., 415, 13-19, (2017)
[69] Lapinsh, M.; Gutcaits, A.; Prusis, P.; Post, C.; Lundstedt, T.; Wikberg, J. E.S., Classification of G-protein coupled receptors by alignment-independent extraction of principal chemical properties of primary amino acid sequences, Protein Sci., 11, 795-805, (2002)
[70] Lei, Y. K.; You, Z. H.; Ji, Z.; Zhu, L.; Huang, D. S., Assessing and predicting protein interactions by combining manifold embedding with multiple information integration, BMC Bioinformatics, 13, S3, (2012)
[71] Liang, K.; Zhang, L.; Lv, J., Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou’s pseudo amino acid composition, J. Theor. Biol., 344, 12-18, (2014)
[72] Liao, B.; Jiang, J. B.; Zeng, Q. G.; Zhu, W., Predicting apoptosis protein subcellular location with PseAAC by incorporating tripeptide composition, Protein. Pept. Lett., 18, 1086-1092, (2011)
[73] Li, B. Q.; Huang, T.; Liu, L.; Cai, Y. D.; Chou, K. C., Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network, PLoS One, 7, e33393, (2012)
[74] Li, L.; Yu, S.; Xiao, W.; Li, Y.; Hu, W.; Huang, L.; Zheng, X.; Zhou, S.; Yang, H., Protein submitochondrial localization from integrated sequence representation and SVM-based backward feature extraction, Mol. Biosyst., 11, 170-177, (2014)
[75] Li, L.; Zhang, P.; Zheng, T.; Zhang, H.; Jiang, Z.; Huang, D., Integrating semantic information into multiple kernels for protein-protein interaction extraction from biomedical literatures, PLoS One, 9, e91898, (2014)
[76] Lin, C.; Chen, W.; Qiu, C.; Wu, Y.; Krishnan, S.; Zou, Q., LibD3C: ensemble classifiers with a clustering and dynamic selection strategy, Neurocomputing, 123, 424-435, (2014)
[77] Lin, H.; Chen, W.; Yuan, L. F.; Li, Z. Q.; Hui, D., Using over-represented tetrapeptides to predict protein submitochondria locations, Acta Biotheor., 61, 259-268, (2013)
[78] Lin, W. Z.; Fang, J. A.; Xiao, X.; Chou, K. C., iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins, Mol. Biosyst., 9, 634-644, (2013)
[79] Liò, P., Wavelets in bioinformatics and computational biology: state of art and perspectives, Bioinformatics, 19, 2-9, (2003)
[80] Liu, B.; Fang, L.; Long, R.; Lan, X.; Chou, K. C., iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition, Bioinformatics, 32, 362-369, (2016)
[81] Liu, B.; Li, K.; Huang, D. S.; Chou, K. C., iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach, Bioinformatics, (2018)
[82] Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L.; Chou, K. C., Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences, Nucleic Acids Res., 43, W65-W71, (2015)
[83] Liu, B.; Wang, S.; Long, R.; Chou, K. C., iRSpot-EL: identify recombination spots with an ensemble learning approach, Bioinformatics, 33, 35-41, (2017)
[84] Liu, B.; Yang, F.; Chou, K. C., 2L-piRNA: a two-layer ensemble classifier for identifying Piwi-Interacting RNAs and their function, Mol. Ther. Nucleic Acids, 7, 267-277, (2017)
[85] Liu, B.; Yang, F.; Huang, D. S.; Chou, K. C., iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC, Bioinformatics, 34, 33-40, (2017)
[86] Liu, B.; Wu, H.; Chou, K. C., Pse-in-One 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences, Natural Sci., 9, 67-91, (2017)
[87] Liu, B.; Weng, F.; Huang, D. S.; Chou, K. C., iRO-3wPseKNC: identify DNA replication origins by three-window-based PseKNC, Bioinformatics, 34, 3086-3093, (2018)
[88] Liu, B.; Xu, J.; Lan, X.; Xu, R.; Zhou, J.; Wang, X.; Chou, K. C., iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition, PLoS One, 9, (2014)
[89] Liu, G. H.; Shen, H. B.; Yu, D. J., Prediction of protein-protein interaction sites with machine-learning-based data-cleaning and post-filtering procedures, J. Membr. Biol., 249, 141-153, (2015)
[90] Liu, T.; Geng, X.; Zheng, X.; Li, R.; Wang, J., Accurate prediction of protein structural class using auto covariance transformation of PSI-BLAST profiles, Amino Acids, 42, 2243-2249, (2012)
[91] Liu, T.; Zheng, X.; Wang, C.; Wang, J., Prediction of subcellular location of apoptosis proteins using pseudo amino acid composition: an approach from auto covariance transformation, Protein Pept. Lett., 17, 1263-1269, (2010)
[92] Li, Z.; Zhou, X.; Dai, Z.; Zou, X., Classification of G proteins and prediction of GPCRs-g proteins coupling specificity using continuous wavelet transform and information theory, Amino Acids, 43, 793-804, (2012)
[93] Li, Z. W.; You, Z. H.; Chen, X.; Li, L. P.; Huang, D. S.; Yan, G. Y.; Nie, R.; Huang, Y. A., Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier, Oncotarget, 8, 23638-23649, (2017)
[94] Luo, X.; You, Z.; Zhou, M.; Li, S.; Leung, H.; Xia, Y.; Zhu, Q., A highly efficient approach to protein interactome mapping based on collaborative filtering framework, Sci. Rep., 5, 7702, (2015)
[95] Mandal, M.; Mukhopadhyay, A.; Maulik, U., Prediction of protein subcellular localization by incorporating multiobjective PSO-based feature subset selection into the general form of Chou’s PseAAC, Med. Biol. Eng. Comput., 53, 331-344, (2015)
[96] Martin, S.; Roe, D.; Faulon, J. L., Predicting protein-protein interactions using signature products, Bioinformatics, 15, 441-446, (2005)
[97] Meher, P. K.; Sahu, T. K.; Saini, V.; Rao, A. R., Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC, Sci. Rep., 7, 42362, (2017)
[98] Mier, P.; Alanis-Lobato, G.; Andrade-Navarro, M. A., Protein-protein interactions can be predicted using coiled coil co-evolution patterns, J. Theor. Biol., 412, 198-203, (2017) · Zbl 1368.92128
[99] Murakami, Y.; Tripathi, L. P.; Prathipati, P.; Mizuguchi, K., Network analysis and in silico prediction of protein-protein interactions with applications in drug discovery, Curr. Opin. Struct. Biol., 44, 134-142, (2017)
[100] Nanni, L.; Lumini, A., An ensemble of k-local hyperplanes for predicting protein-protein interactions, Bioinformatics, 22, 1207-1210, (2006)
[101] Nanni, L.; Lumini, A., An ensemble of reduced alphabets with protein encoding based on grouped weight for predicting DNA-binding proteins, Amino Acids, 36, 167-175, (2009)
[102] Qiu, J. D.; Luo, S. H.; Huang, J. H.; Sun, X. Y.; Liang, R. P., Predicting subcellular location of apoptosis proteins based on wavelet transform and support vector machine, Amino Acids, 38, 1201-1208, (2010)
[103] Qiu, W.; Li, S.; Cui, X.; Yu, Z.; Wang, M.; Du, J.; Peng, Y.; Yu, B., Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou’s pseudo-amino acid composition, J. Theor. Biol., 450, 86-103, (2018) · Zbl 1397.92228
[104] Ren, L. H.; Shen, Y. Z.; Ding, Y. S.; Chou, K. C., Bio-entity network for analysis of protein-protein interaction networks, Asian J. Control, 13, 726-737, (2011) · Zbl 1303.93030
[105] Shen, H. B.; Chou, K. C., HIVcleave: a web-server for predicting human immunodeficiency virus protease cleavage sites in proteins, Anal. Biochem., 375, 388-390, (2008)
[106] Shen, H. B.; Chou, K. C., PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition, Anal. Biochem., 373, 386-388, (2008)
[107] Shi, M. G.; Xia, J. F.; Li, X. L.; Huang, D. S., Predicting protein-protein interactions from sequence using correlation coefficient and high-quality interaction dataset, Amino Acids, 38, 891-899, (2010)
[108] Shi, S. P.; Qiu, J. D.; Sun, X. Y.; Suo, S. B.; Huang, S. Y.; Liang, R. P., A method to distinguish between lysine acetylation and lysine methylation from protein sequences, J. Theor. Biol., 310, 223-230, (2012) · Zbl 1337.92162
[109] Shoemaker, B. A.; Panchenko, A. R., Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners, PLoS. Comput. Biol., 3, e43, (2007)
[110] Su, Z. D.; Huang, Y.; Zhang, Z. Y.; Zhao, Y. W.; Wang, D.; Chen, W.; Chou, K. C.; Lin, H., iLoc-IncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC, Bioinformatics, (2018)
[111] Szilágyi, A.; Grimm, V.; Arakaki, A. K.; Skolnick, J., Prediction of physical protein-protein interactions, Phys. Biol., 2, S1-16, (2005)
[112] Tung, C. H.; Chen, C. W.; Sun, H. H.; Chu, Y. W., Predicting human protein subcellular ocalization by heterogeneous and comprehensive approaches, PLoS. One, 12, (2017)
[113] Uddin, M. R.; Sharma, A.; Farid, D. M.; Rahman, M. M.; Dehzangi, R.; Shatabda, S., EvoStruct-Sub: an accurate Gram-positive protein subcellular localization predictor using evolutionary and structural features, J. Theor. Biol., 443, 138-146, (2018)
[114] Vapnik, V. N., The Nature of Statistical Learning Theory, (1995), Springer: Springer New York · Zbl 0833.62008
[115] Wang, D. D.; Wang, R.; Yan, H., Fast prediction of protein-protein interaction sites based on extreme learning machines, Neurocomputing, 128, 258-266, (2014)
[116] Wang, J.; Zhang, L.; Jia, L.; Ren, Y.; Yu, G., Protein-protein interactions prediction using a novel local conjoint triad descriptor of amino acid sequences, Int. J. Mol. Sci., 18, 2373, (2017)
[117] Wang, T.; Li, L.; Huang, Y. A.; Zhang, H.; Ma, Y.; Zhou, X., Prediction of protein-protein interactions from amino acid sequences based on continuous and discrete wavelet transform features, Molecules, 23, 823, (2018)
[118] Wang, X.; Li, G. Z., A multi-label predictor for identifying the subcellular locations of singleplex and multiplex eukaryotic proteins, PLoS One, 7, e36317, (2012)
[119] Wang, Y.; You, Z.; Li, X.; Chen, X.; Jiang, T.; Zhang, J., PCVMZM: using the probabilistic classification vector machines model combined with a zernike moments descriptor to predict protein-protein interactions from protein sequences, Int. J. Mol. Sci., 18, 1029, (2017)
[120] Wei, C.; Hao, L.; Chou, K. C., Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences, Mol. Biosyst., 11, 2620-2634, (2015)
[121] Wei, L.; Xing, P.; Zeng, J.; Chen, J.; Su, R.; Guo, F., Improved prediction of protein-protein interactions using novel negative samples, features, and an ensemble classifier, Artif. Intell. Med., 83, 67-74, (2017)
[122] Wen, Y. T.; Lei, H. J.; You, Z. H.; Lei, B. Y.; Chen, X.; Li, L. P., Prediction of protein-protein interactions by label propagation with protein evolutionary and chemical information derived from heterogeneous network, J. Theor. Biol., 430, 9-20, (2017) · Zbl 1382.92138
[123] Wong, L.; You, Z. H.; Ming, Z.; Li, J.; Chen, X.; Huang, Y. A., Detection of interactions between proteins through rotation forest and local phase quantization descriptors, Int. J. Mol. Sci., 17, 21, (2015)
[124] Wu, J.; Li, M. L.; Yu, L. Z.; Wang, C., An ensemble classifier of support vector machines used to predict protein structural classes by fusing auto covariance and pseudo-amino acid composition, Protein J, 29, 62-67, (2010)
[125] Xenarios, I.; Salwínski, Ł.; Duan, X. J.; Higney, P.; Kim, S. M.; Eisenberg, D., DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions, Nucleic. Acids. Res., 30, 303-305, (2002)
[126] Xiang, Q. L.; Liao, B.; Li, X. H.; Xu, H. M.; Chen, J.; Shi, Z. X.; Dai, Q.; Yao, Y. H., Subcellular localization prediction of apoptosis proteins based on evolutionary information and support vector machine, Artif. Intell. Med., 78, 41-46, (2017)
[127] Xiao, X.; Wu, Z. C.; Chou, K. C., iLoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites, J. Theor. Biol., 284, 42-51, (2011) · Zbl 1397.92238
[128] Xu, R.; Zhou, J.; Liu, B.; He, Y.; Zou, Q.; Wang, X.; Chou, K. C., Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach, J. Biomol. Struct. Dyn., 33, 1720-1730, (2015)
[129] Xu, Y.; Ding, J.; Wu, L. Y.; Chou, K. C., iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition, PLoS One, 8, e55844, (2013)
[130] Yang, H.; Qiu, W. R.; Liu, G.; Guo, F. B.; Chen, W.; Chou, K. C.; Lin, H., iRSpot-Pse6NC: identifying recombination spots in Saccharomyces cerevisiaeby incorporating hexamer composition into general PseKNC, Int. J. Biol. Sci., 14, 883-891, (2018)
[131] Yang, L.; Li, Y.; Xiao, R.; Zeng, Y.; Xiao, J.; Tan, F.; Li, M., Using auto covariance method for functional discrimination of membrane proteins based on evolution information, Amino Acids, 38, 1497-1503, (2010)
[132] Yang, Z.; Lin, H.; Li, Y., BioPPISVMExtractor: a protein-protein interaction extractor for biomedical literature using SVM and rich feature sets, J. Biomed. Inform., 43, 88-96, (2010)
[133] Yan, X.; Shao, X. J.; Wu, L. Y.; Deng, N. Y.; Chou, K. C., iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins, PeerJ, 1, e171, (2013)
[134] Yin, Z.; Deng, T.; Peterson, L. E.; Yu, R.; Lin, J.; Hamilton, D. J.; Reardon, P. R.; Sherman, V.; Winnier, G.; Zhan, M.; Lyon, C. J.; Wong, S. T.; Hsueh, W. A., Transcriptome analysis of human adipocytes implicates the NOD-like receptor pathway in obesity-induced adipose inflammation, Mol. Cell. Endocrinol., 394, 80-87, (2014)
[135] Yousef, A.; Moghadam, C. N., A novel method based on new adaptive LVQ neural network for predicting protein-protein interactions from protein sequences, J. Theor. Biol., 336, 231-239, (2013)
[136] You, Z. H.; Lei, Y. K.; Gui, J.; Huang, D. S.; Zhou, X., Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data, Bioinformatics, 26, 2744-2751, (2010)
[137] You, Z. H.; Li, J.; Gao, X.; He, Z.; Zhu, L.; Lei, Y. K.; Ji, Z. W., Detecting protein-protein interactions with a novel matrix-based protein sequence representation and support vector machines, Biomed Res. Int., 2015, 1-9, (2015)
[138] Yu, B.; Li, S.; Chen, C.; Xu, J. M.; Qiu, W. Y.; Wu, X.; Chen, R. X., Prediction subcellular localization of Gram-negative bacterial proteins by support vector machine using wavelet denoising and Chou’s pseudo amino acid composition, Chemom. Intell. Lab. Syst., 167, 102-112, (2017)
[139] Yu, B.; Li, S.; Qiu, W. Y.; Chen, C.; Chen, R. X.; Wang, L.; Wang, M. H.; Zhang, Y., Accurate prediction of subcellular location of apoptosis proteins combining Chou’s PseAAC and PsePSSM based on wavelet denoising, Oncotarget, 8, 107640-107665, (2017)
[140] Yu, B.; Lou, L.; Li, S.; Zhang, Y.; Qiu, W.; Wu, X.; Wang, M.; Tian, B., Prediction of protein structural class for low-similarity sequences using Chou’s pseudo amino acid composition and wavelet denoising, J. Mol. Graph. Model., 76, 260-273, (2017)
[141] Yu, B.; Li, S.; Qiu, W.; Wang, M.; Du, J.; Zhang, Y.; Chen, X., Prediction of subcellular location of apoptosis proteins by incorporating PsePSSM and DCCA coefficient based on LFDA dimensionality reduction, BMC Genomics, 19, 478, (2018)
[142] Yu, B.; Zhang, Y., The analysis of colon cancer gene expression profiles and the extraction of informative genes, J. Comput. Theor. Nanosci., 10, 1097-1103, (2013)
[143] Yu, B.; Zhang, Y., A simple method for predicting transmembrane proteins based on wavelet transform, Int. J. Biol. Sci., 9, 22-33, (2013)
[144] Zhai, J. X.; Cao, T. J.; An, J. Y.; Bian, Y. T., Highly accurate prediction of protein self-interactions by incorporating the average block and PSSM information into the general PseAAC, J. Theor. Biol., 432, 80-86, (2017) · Zbl 1393.92016
[145] Zhang, P.; Tao, L.; Zeng, X.; Qin, C.; Chen, S.; Zhu, F.; Li, Z.; Jiang, Y.; Chen, W.; Chen, Y. Z., A protein network descriptor server and its use in studying protein, disease, metabolic and drug targeted networks, Brief. Bioinform., 18, 1057-1070, (2016)
[146] Zhang, Q. C.; Petrey, D.; Deng, L.; Qiang, L.; Shi, Y.; Thu, C. A.; Bisikirska, B.; Lefebvre, C.; Accili, D.; Hunter, T.; Maniatis, T.; Califano, A.; Honig, B., Structure-based prediction of protein-protein interactions on a genome-wide scale, Nature, 490, 556-560, (2012)
[147] Zhang, S., Accurate prediction of protein structural classes by incorporating PSSS and PSSM into Chou’s general PseAAC, Chemom. Intell. Lab. Syst., 142, 28-35, (2015)
[148] Zhang, S. B.; Tang, Q. R., Protein-protein interaction inference based on semantic similarity of gene ontology terms, J. Theor. Biol., 401, 30-37, (2016)
[149] Zhang, S. W.; Wei, Z. G., Some remarks on prediction of protein-protein interaction with machine learning, Med. Chem., 11, 254-264, (2015)
[150] Zhang, X.; Xiong, J.; Song, J.; Chang, S., Prediction of human protein-protein interaction by a domain-based approach, J. Theor. Biol., 396, 144-153, (2016)
[151] Zhang, Y. N.; Pan, X. Y.; Huang, Y.; Shen, H. B., Adaptive compressive learning for prediction of protein-protein interactions from primary sequence, J. Theor. Biol., 283, 44-52, (2011) · Zbl 1397.92243
[152] Zhang, Z. H.; Wang, Z. H.; Wang, Y. X., A new encoding scheme to improve the performance of protein structural class prediction, Lect. Notes Comput. Sci., 1164-1173, (2005)
[153] Zhang, Z. H.; Wang, Z. H.; Zhang, Z. R.; Wang, Y. X., A novel method for apoptosis protein subcellular localization prediction combining encoding based on grouped weight and support vector machine, FEBS Lett., 580, 6169-6174, (2006)
[154] Zhao, X. W.; Ma, Z. Q.; Yin, M. H., Predicting protein-protein interactions by combing various sequence- derived features into the general form of Chou’s Pseudo amino acid composition, Protein Pept. Lett., 19, 492-500, (2012)
[155] Zhou, Y. Z.; Gao, Y.; Zheng, Y. Y., Prediction of protein-protein interactions using local description of amino acid sequence, Adv. Comput. Sci. Educ. Appl., 202, 254-262, (2011)
[156] Zhu, L.; You, Z. H.; Huang, D. S., Increasing the reliability of protein-protein interaction networks via non-convex semantic embedding, Neurocomputing, 121, 99-107, (2013)
[157] Zhu, L.; You, Z. H.; Huang, D. S.; Wang, B., t-LSE: a novel robust geometric approach for modeling protein-protein interaction networks, PLoS One, 8, e58368, (2013)
[158] Zhu, Z.; Zhang, Y.; Ji, Z.; He, S.; Yang, X., High-throughput DNA sequence data compression, Brief. Bioinform., 16, 1-15, (2015)
[159] Zou, H. L., A multi-label classifier for prediction membrane protein functional types in animal, J. Membr. Biol., 247, 1141-1148, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.