×

zbMATH — the first resource for mathematics

Pairs trading with a mean-reverting jump-diffusion model on high-frequency data. (English) Zbl 1406.91425
Summary: This paper develops a pairs trading framework based on a mean-reverting jump-diffusion model and applies it to minute-by-minute data of the S&P 500 oil companies from 1998 to 2015. The established statistical arbitrage strategy enables us to perform intraday and overnight trading. Essentially, we conduct a three-step calibration procedure to the spreads of all pair combinations in a formation period. Top pairs are selected based on their spreads’ mean-reversion speed and jump behaviour. Afterwards, we trade the top pairs in an out-of-sample trading period with individualized entry and exit thresholds. In the back-testing study, the strategy produces statistically and economically significant returns of 60.61% p.a. and an annualized Sharpe ratio of 5.30, after transaction costs. We benchmark our pairs trading strategy against variants based on traditional distance and time-series approaches and find its performance to be superior relating to risk-return characteristics. The mean-reversion speed is a main driver of successful and fast termination of the pairs trading strategy.

MSC:
91G10 Portfolio theory
60J75 Jump processes (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andersen, T.G., Bollerslev, T., Frederiksen, P. and Ørregaard Nielsen, M., Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns. J. Appl. Econom., 2010, 25 , 233-261.
[2] Avellaneda, M. and Lee, J.H., Statistical arbitrage in the US equities market. Quant. Finance, 2010, 10 , 761-782. · Zbl 1194.91196
[3] Bacon, C.R., Practical Portfolio Performance: Measurement and Attribution, 2nd ed., 2008 (John Wiley & Sons: Chichester).
[4] Ball, C.A. and Torous, W.N., On jumps in common stock prices and their impact on call option pricing. J. Finance, 1985, 40 , 155-173.
[5] Barlow, M.T., A diffusion model for electricity prices. Math. Finance, 2002, 12 , 287-298. · Zbl 1046.91041
[6] Benth, F.E., Kiesel, R. and Nazarova, A., A critical empirical study of three electricity spot price models. Energ. Econ., 2012, 34 , 1589-1616.
[7] Bertram, W.K., An empirical investigation of Australian stock exchange data. Physica A, 2004, 341 , 533-546.
[8] Bertram, W.K., Optimal trading strategies for Itô diffusion processes. Physica A, 2009, 388 , 2865-2873.
[9] Bertram, W.K., Analytic solutions for optimal statistical arbitrage trading. Physica A, 2010, 389 , 2234-2243.
[10] Boehmer, E. and Wu, J., Short selling and the price discovery process. Rev. Financ. Stud., 2012, 26 , 287-322.
[11] Bogomolov, T., Pairs trading based on statistical variability of the spread process. Quant. Finance, 2013, 13 , 1411-1430. · Zbl 1281.91119
[12] Bollerslev, T., Todorov, V. and Li, S.Z., Jump tails, extreme dependencies, and the distribution of stock returns. J. Econometrics, 2013, 172 , 307-324. · Zbl 1443.62334
[13] Bollinger, J., Using Bollinger bands. Stock. & Commun., 1992, 10 , 47-51.
[14] Bollinger, J., Bollinger on Bollinger Bands, 2001 (McGraw-Hill: New York).
[15] Bowen, D., Hutchinson, M.C. and O’Sullivan, N., High frequency equity pairs trading: Transaction costs, speed of execution and patterns in returns. J. Trad., 2010, 5 , 31-38.
[16] Bowen, D.A. and Hutchinson, M.C., Pairs trading in the UK equity market: Risk and return. Euro. J. Finance, 2015, 22 , 1363-1387.
[17] Byrd, R.H., Lu, P., Nocedal, J. and Zhu, C., A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput., 1995, 16 , 1190-1208. · Zbl 0836.65080
[18] Carr, P., Geman, H., Madan, D.B. and Yor, M., The fine structure of asset returns: An empirical investigation. J. Bus., 2002, 75 , 305-332.
[19] Cartea, Á. and Figueroa, M.G., Pricing in electricity markets: A mean reverting jump diffusion model with seasonality. Appl. Math. Finance, 2005, 12 , 313-335. · Zbl 1134.91526
[20] Cartea, Á., Jaimungal, S. and Penalva, J., Algorithmic and High-frequency Trading, 2015 (Cambridge University Press: Cambridge). · Zbl 1332.91001
[21] Chan, K., Chockalingam, M. and Lai, K.W.L., Overnight information and intraday trading behavior: Evidence from NYSE cross-listed stocks and their local market information. J. Multinat. Finan. Manage., 2000, 10 , 495-509.
[22] Chang, E.C., Luo, Y. and Ren, J., Short-selling, margin-trading, and price efficiency: Evidence from the Chinese market. J. Bank. Finance, 2014, 48 , 411-424.
[23] Clegg, M. and Krauss, C., Pairs trading with partial cointegration. Quant. Finance, 2018, 18 , 121-138. · Zbl 1400.91534
[24] Cont, R., Empirical properties of asset returns: Stylized facts and statistical issues. Quant. Finance, 2001, 1 , 223-236. · Zbl 1408.62174
[25] Cont, R., Volatility clustering in financial markets: Empirical facts and agent-based models. In Long Memory in Economics edited by G. Teyssière and A.P. Kirman, pp. 289-309, 2007 (Springer: Berlin). · Zbl 1181.91341
[26] Cont, R. and Tankov, P., Financial Modelling with Jump Processes, Vol. 2., 2003 (CRC Press: London). · Zbl 1052.91043
[27] Cummins, M. and Bucca, A., Quantitative spread trading on crude oil and refined products markets. Quant. Finance, 2012, 12 , 1857-1875.
[28] Daouk, H. and Charoenrook, A.A., A study of market-wide short-selling restrictions. Working Paper, The Owen Graduate School of Management, 2005.
[29] D’Avolio, G., The market for borrowing stock. J. Financ. Econ., 2002, 66 , 271-306.
[30] Diamond, D.W. and Verrecchia, R.E., Constraints on short-selling and asset price adjustment to private information. J. Financ. Econ., 1987, 18 , 277-311.
[31] Do, B. and Faff, R., Does simple pairs trading still work?Financ. Anal. J., 2010, 66 , 83-95.
[32] Do, B. and Faff, R., Are pairs trading profits robust to trading costs?J. Financ. Res., 2012, 35 , 261-287.
[33] Dragulescu, A.A., xlsx: Read, write, format Excel 2007 and Excel 97/2000/XP/2003 files. R package, 2014.
[34] Ekström, E., Lindberg, C. and Tysk, J., Optimal liquidation of a pairs trade. In Advanced Mathematical Methods for Finance, edited by G. Di Nunno and B. Øksendal, pp. 247-255, 2011 (Springer: Berlin). · Zbl 1232.91618
[35] Elliott, R.J., van der Hoek, J. and Malcolm, W.P., Pairs trading. Quant. Finance, 2005, 5 , 271-276. · Zbl 1134.91415
[36] Escribano, A., IgnacioPeña, J. and Villaplana, P., Modelling electricity prices: International evidence. Oxford Bull. Econ. Statist., 2011, 73 , 622-650.
[37] Eydeland, A. and Wolyniec, K., Energy and Power Risk Management: New Developments in Modeling, Pricing, and Hedging, 2003 (John Wiley & Sons: Hoboken, NJ).
[38] Fama, E.F. and French, K.R., Multifactor explanations of asset pricing anomalies. J. Finance, 1996, 51 , 55-84.
[39] Fama, E.F. and French, K.R., A five-factor asset pricing model. J. Financ. Econ., 2015, 116 , 1-22.
[40] Gatev, E., Goetzmann, W.N. and Rouwenhorst, K.G., Pairs trading: Performance of a relative value arbitrage rule. Working Paper, Yale School of Management’s International Center for Finance,1999.
[41] Gatev, E., Goetzmann, W.N. and Rouwenhorst, K.G., Pairs trading: Performance of a relative-value arbitrage rule. Rev. Financ. Stud., 2006, 19 , 797-827.
[42] Gloter, A., Loukianova, D. and Mai, H., Jump filtering and efficient drift estimation for Lévy-driven SDE’s. Working Paper, Centre de Recherche en Economie et Statistique, 2016. · Zbl 1430.60066
[43] Göncü, A. and Akyıldırım, E., Statistical arbitrage with pairs trading. Int. Rev. Finance, 2016a, 16 , 307-319.
[44] Göncü, A. and Akyıldırım, E., A stochastic model for commodity pairs trading. Quant. Finance, 2016b, 16 , 1843-1857. · Zbl 1400.91591
[45] Hansen, P.R. and Lunde, A., A realized variance for the whole day based on intermittent high-frequency data. J. Financ. Economet., 2005, 3 , 525-554.
[46] Jain, A., Jain, P.K., McInish, T.H. and McKenzie, M., Worldwide reach of short selling regulations. J. Financ. Econ., 2013, 109 , 177-197.
[47] Jegadeesh, N. and Titman, S., Returns to buying winners and selling losers: Implications for stock market efficiency. J. Finance, 1993, 48 , 65-91.
[48] Jing, B.Y., Kong, X.B. and Liu, Z., Modeling high-frequency financial data by pure jump processes. Ann. Stat., 2012, 759-784. · Zbl 1273.62195
[49] Jondeau, E., Lahaye, J. and Rockinger, M., Estimating the price impact of trades in a high-frequency microstructure model with jumps. J. Bank. Finance, 2015, 61 , 205-224.
[50] Kappou, K., Brooks, C. and Ward, C., The S &P500 index effect reconsidered: Evidence from overnight and intraday stock price performance and volume. J. Bank. Finance, 2010, 34 , 116-126.
[51] Kim, K.J., Financial time series forecasting using support vector machines. Neurocomputing, 2003, 55 , 307-319.
[52] Knoll, J., Stübinger, J. and Grottke, M., Exploiting social media with higher-order factorization machines: Statistical arbitrage on high-frequency data of the S &P500. FAU Discussion Papers in Economics (13), University of Erlangen-Nürnberg, 2017.
[53] Krauss, C., Statistical arbitrage pairs trading strategies: Review and outlook. J. Econ. Surv., 2017, 31 , 513-545.
[54] Krauss, C., Do, X.A. and Huck, N., Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S &P 500. Eur. J. Oper. Res., 2017, 259 , 689-702. · Zbl 1395.91514
[55] Krauss, C. and Stübinger, J., Non-linear dependence modelling with bivariate copulas: Statistical arbitrage pairs trading on the S &P 100. Appl. Econ., 2017, 49 , 5352-5369.
[56] Larsson, S., Lindberg, C. and Warfheimer, M., Optimal closing of a pair trade with a model containing jumps. Appl. Math. Czech, 2013, 58 , 249-268. · Zbl 1289.91154
[57] Leifeld, P., texreg: Conversion of statistical model output in R to HTML tables. J. Stat. Softw., 2013, 55 , 1-24.
[58] Leung, T. and Li, X., Optimal Mean Reversion Trading: Mathematical Analysis and Practical Applications, 2015 (World Scientific: Singapore).
[59] Liu, B., Chang, L.B. and Geman, H., Intraday pairs trading strategies on high frequency data: The case of oil companies. Quant. Finance, 2017, 17 , 87-100. · Zbl 1402.91717
[60] Lucia, J.J. and Schwartz, E.S., Electricity prices and power derivatives: Evidence from the Nordic power exchange. Rev. Deriv. Res., 2002, 5 , 5-50. · Zbl 1064.91508
[61] Lux, T. and Marchesi, M., Volatility clustering in financial markets: A microsimulation of interacting agents. Int. J. Theor. Appl. Finance, 2000, 3 , 675-702. · Zbl 0967.91072
[62] Mai, H., Drift estimation for jump diffusions: Time-continuous and high-frequency observations. PhD Thesis, Humboldt-Universität zu, Berlin, 2012.
[63] Mai, H., Efficient maximum likelihood estimation for Lévy-driven Ornstein-Uhlenbeck processes. Bernoulli, 2014, 20 , 919-957. · Zbl 1400.62053
[64] Martens, M., Measuring and forecasting S &P 500 index-futures volatility using high-frequency data. J. Futures Markets, 2002, 22 , 497-518.
[65] Merton, R.C., Option pricing when underlying stock returns are discontinuous. J. Financ. Econ., 1976, 3 , 125-144. · Zbl 1131.91344
[66] Merton, R.C., Continuous-time Finance, 1992 (Wiley-Blackwell: Cambridge). · Zbl 1019.91502
[67] Meyer-Brandis, T. and Tankov, P., Multi-factor jump-diffusion models of electricity prices. Int. J. Theor. Appl. Finance, 2008, 11 , 503-528. · Zbl 1185.91191
[68] Miao, G.J., High frequency and dynamic pairs trading based on statistical arbitrage using a two-stage correlation and cointegration approach. Int. J. Econ. Finance, 2014, 6 , 96-110.
[69] Mina, J. and Xiao, J.Y., Return to RiskMetrics: The evolution of a standard. RiskMetrics Group, 2001.
[70] Ng, H.S., Lam, K.P. and Lam, S.S. (eds.), Incremental Genetic Fuzzy Expert Trading System for Derivatives Market Timing, 2003 (Wiley: London).
[71] Ou, J.A. and Penman, S.H., Financial statement analysis and the prediction of stock returns. J. Account. Econ., 1989, 11 , 295-329.
[72] Peterson, B.G. and Carl, P., Performance analytics: Econometric tools for performance and risk analysis. R package, 2014.
[73] Pfaff, B. and McNeil, A., QRM: Provides R-Language code to examine quantitative risk management concepts. R package, 2016.
[74] Platen, E. and Bruti-Liberati, N., Numerical Solution of Stochastic Differential Equations with Jumps in Finance, 2010 (Springer Verlag: Berlin). · Zbl 1225.60004
[75] QuantQuote , QuantQuote market data and software, 2016. Available online at: https://www.quantquote.com/
[76] R CoreTeam , stats: A language and environment for statistical computing. R package, 2017.
[77] Rad, H., Low, R.K.Y. and Faff, R.W., The profitability of pairs trading strategies: Distance, cointegration and copula methods. Quant. Finance, 2016, 1-18.
[78] Riedel, C. and Wagner, N., Is risk higher during non-trading periods? The risk trade-off for intraday versus overnight market returns. J. Int. Financ. Mark. I., 2015, 39 , 53-64.
[79] Rmetrics Core Team, Wuertz, D., Setz, T. and Chalabi, Y., fBasics: Rmetrics - Markets and basic statistics. R package, 2014.
[80] Rmetrics Core Team, Wuertz, D., Setz, T. and Chalabi, Y., timeSeries: Rmetrics - Financial time series objects. R package, 2015.
[81] Ryan, J.A., quantmod: Quantitative financial modelling framework. R package, 2016.
[82] Ryan, J.A. and Ulrich, J.M., xts: eXtensible time series. R package, 2014.
[83] Saffi, P.A.C. and Sigurdsson, K., Price efficiency and short selling. Rev. Financ. Stud., 2010, 24 , 821-852.
[84] Seifert, J. and Uhrig-Homburg, M., Modelling jumps in electricity prices: Theory and empirical evidence. Rev. Deriv. Res., 2007, 10 , 59-85. · Zbl 1151.91680
[85] Soetaert, K., rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of ordinary differential equations. R package, 2009.
[86] S &P 500 , Dow Jones Indices, Equity S &P 500, 2015. Available online at: http://us.spindices.com/indices/equity/sp-500
[87] Stübinger, J. and Bredthauer, J., Statistical arbitrage pairs trading with high-frequency data. Int. J. Econ. Financ. Iss., 2017, 7 (4), 650-662.
[88] Stübinger, J., Mangold, B. and Krauß, C., Statistical arbitrage with vine copulas. FAU Discussion Papers in Economics (13), University of Erlangen-Nürnberg, 2016.
[89] Trapletti, A. and Hornik, K., tseries: Time series analysis and computational finance. R package, 2017.
[90] Tsiakas, I., Overnight information and stochastic volatility: A study of European and US stock exchanges. J. Bank. Finance, 2008, 32 , 251-268.
[91] Ulrich, J., TTR: Technical trading rules. R package, 2016.
[92] Venables, W.N. and Ripley, B.D., Modern Applied Statistics with S, 4th ed., 2002 (Springer: New York). · Zbl 1006.62003
[93] Vidyamurthy, G., Pairs Trading: Quantitative Methods and Analysis, 2004 (John Wiley & Sons: Hoboken, NJ).
[94] Villaplana, P., Pricing power derivatives: A two-factor jump-diffusion approach. Working Paper, Universitat Pompeu Fabra, 2003.
[95] Wickham, H., readxl: Read Excel files. R package, 2016.
[96] Wickham, H. and Francois, R., dplyr: A grammar of data manipulation. R package, 2016.
[97] Wickham, H., Hester, J. and Francois, R., readr: Read tabular data. R package, 2016.
[98] Zeileis, A., Object-oriented computation of Sandwich estimators. J. Stat. Softw., 2006, 16 , 1-16.
[99] Zeileis, A. and Grothendieck, G., zoo: S3 infrastructure for regular and irregular time series. J. Stat. Softw., 2005, 14 , 1-27.
[100] Zeileis, A. and Hothorn, T., Diagnostic checking in regression relationships. R News, 2002, 2 , 7-10.
[101] Zeng, Z. and Lee, C.G., Pairs trading: Optimal thresholds and profitability. Quant. Finance, 2014, 14 , 1881-1893. · Zbl 1397.91567
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.