×

pSSbond-PseAAC: prediction of disulfide bonding sites by integration of PseAAC and statistical moments. (English) Zbl 1406.92460

Summary: The structure of protein gains additional stability against various detrimental effects by the presence of disulfide bonds. The formation of correct disulfide bonds between cysteine residues ensures proper in vivo and in vitro folding of the protein. Many cysteine residues can be present in the polypeptide chain of a protein, however, not all cysteine residues are involved in the formation of a disulfide bond, and therefore, accurate prediction of these bonds is crucial for identifying biophysical characteristics of a protein. In the present study, a novel method is proposed for the prediction of intramolecular disulfide bonds accurately using statistical moments and PseAAC. The pSSbond-PseAAC uses PseAAC along with position and composition relative features to calculate statistical moments. Statistical moments are important as they are very sensitive regarding the position of data sequences and for prediction of intramolecular disulfide bonds, moments are combined together to train neural networks. The overall accuracy of the pSSbond-PseAAC is 98.97% to sensitivity value 98.92%, specificity 98.99% and 0.98 MCC; and it outperforms various previously reported studies.

MSC:

92D20 Protein sequences, DNA sequences
68T05 Learning and adaptive systems in artificial intelligence
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62P10 Applications of statistics to biology and medical sciences; meta analysis
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akbar, S.; Hayat, M., iMethyl-STTNC: Identification of N6-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences, J. Theor. Biol., 455, 205-211, (2018)
[2] Akbar, S.; Hayat, M., iMethyl-STTNC: Identification of N(6)-methyladenosine sites by extending the Idea of SAAC into Chou’s PseAAC to formulate RNA sequences, J Theor Biol., 455, 205-211, (2018)
[3] Akmal, M. A.; Rasool, N.; Khan, Y. D., Prediction of N-linked glycosylation sites using position relative features and statistical moments, PloS One, 12, (2017)
[4] Andreu, C. I.; Woehlbier, U.; Torres, M.; Hetz, C., Protein disulfide isomerases in neurodegeneration: from disease mechanisms to biomedical applications, FEBS Lett., 586, 2826-2834, (2012)
[5] Arif, M.; Hayat, M.; Jan, Z., iMem-2LSAAC: A two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition, J. Theor. Biol., 442, 11-21, (2018) · Zbl 1397.92180
[6] Arif, M.; Hayat, M.; Jan, Z., iMem-2LSAAC: A two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into chou’s pseudo amino acid composition, J. Theor. Biol., 442, 11-21, (2018) · Zbl 1397.92180
[7] Butt, A. H.; Rasool, N.; Khan, Y. D., A Treatise to Computational Approaches Towards Prediction of Membrane Protein and Its Subtypes, J. Memb. Biol., 250, 55-76, (2017)
[8] Butt, A. H.; Khan, S. A.; Jamil, H.; Rasool, N.; Khan, Y. D., A prediction model for membrane proteins using moments based features, BioMed Res. Int., 2016, (2016)
[9] Cai, L.; Huang, T.; Su, J.; Zhang, X.; Chen, W.; Zhang, F.; He, L.; Chou, K.-C., Implications of newly identified brain eQTL genes and their interactors in Schizophrenia, Mol. Therapy-Nucleic Acids, 12, 433-442, (2018)
[10] Cai, Y. D.; Chou, K. C., Predicting subcellular localization of proteins in a hybridization space, Bioinformatics, 20, 1151-1156, (2004), bth054 [pii]
[11] Cao, D. S.; Xu, Q. S.; Liang, Y. Z., propy: a tool to generate various modes of Chou’s PseAAC, Bioinformatics, 29, 960-962, (2013), doi: btt072 [pii] 10.1093/bioinformatics/btt072
[12] Ceroni, A.; Passerini, A.; Vullo, A.; Frasconi, P., DISULFIND: a disulfide bonding state and cysteine connectivity prediction server, Nucleic Acids Res., 34, W177-W181, (2006)
[13] Chen, W.; Feng, P.-M.; Lin, H.; Chou, K.-C., iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition, Nucleic Acids Res., 41, e68, (2013), -e68
[14] Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K.-C., iRNA-PseU: Identifying RNA pseudouridine sites, Molecul. Therapy-Nucleic Acids, 5, 7, e332, (2016)
[15] Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K. C., iRNA-PseU: Identifying RNA pseudouridine sites, Molecular Therapy - Nucleic Acids, 5, e332, (2016)
[16] Chen, W.; Ding, H.; Zhou, X.; Lin, H.; Chou, K.-C., iRNA (m6A)-PseDNC: Identifying N6-methyladenosine sites using pseudo dinucleotide composition, Anal. Biochem, (2018)
[17] Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.-C., iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences, Oncotarget, 8, 4208, (2017)
[18] Cheng, X.; Xiao, X.; Chou, K.-C., pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC, Mol. BioSyst., 13, 1722-1727, (2017)
[19] Cheng, X.; Xiao, X.; Chou, K.-C., pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC, Genomics, 110, 4, 231-239, (2017)
[20] Cheng, X.; Xiao, X.; Chou, K.-C., pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC, Gene, 628, 315-321, (2017)
[21] Cheng, X.; Xiao, X.; Chou, K.-C., pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC, Genomics, (2017)
[22] Cheng, X.; Xiao, X.; Chou, K.-C., pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC, J. Theor. Biol, (2018)
[23] Cheng, X.; Zhao, S.-G.; Xiao, X.; Chou, K.-C., iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals, Bioinformatics, 33, 341-346, (2016)
[24] Cheng, X.; Zhao, S.-G.; Xiao, X.; Chou, K.-C., iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals, Oncotarget, 8, 58494, (2017)
[25] Cheng, X.; Zhao, S.-G.; Lin, W.-Z.; Xiao, X.; Chou, K.-C., pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites, Bioinformatics, 33, 3524-3531, (2017)
[26] Cheng, X.; Lin, W.-Z.; Xiao, X.; Chou, K.-C.; Hancock, J., pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC, Bioinformatics, 1, 9, (2018)
[27] Chou, K.-C., Using subsite coupling to predict signal peptides, Protein Eng., 14, 75-79, (2001)
[28] Chou, K.-C., Some remarks on protein attribute prediction and pseudo amino acid composition, J. Theor. Biol., 273, 236-247, (2011) · Zbl 1405.92212
[29] Chou, K.-C., Some remarks on predicting multi-label attributes in molecular biosystems, Mol. Biosyst., 9, 1092-1100, (2013)
[30] Chou, K.-C., Impacts of bioinformatics to medicinal chemistry, Med. Chem., 11, 218-234, (2015)
[31] Chou, K.-C., An unprecedented revolution in medicinal chemistry driven by the progress of biological science, Current Topics in Med. Chem., 17, 2337-2358, (2017)
[32] Chou, K.-C.; Zhang, C.-T., Prediction of protein structural classes, Crit. Rev. Biochem. Mol. Biol., 30, 275-349, (1995)
[33] Chou, K.-C.; Howe, W. J., Prediction of the tertiary structure of the β-secretase zymogen, Biochem. Biophys. Res. Commun., 292, 702-708, (2002)
[34] Chou, K.-C.; Shen, H.-B., Recent advances in developing web-servers for predicting protein attributes, Nat. Sci., 1, 63, (2009)
[35] Chou, K.-C.; Cheng, X.; Xiao, X., pLoc_bal-mHum: Predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset, Genomics, (2018), Epub ahead of print
[36] Chou, K. C., Prediction of protein cellular attributes using pseudo amino acid composition, PROTEINS: Structure, Function, and Genetics, 43, 246-255, (2001), (Erratum: ibid., 2001, Vol.44, 60)[pii]
[37] Chou, K. C., Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology, Curr. Proteomics, 6, 262-274, (2009)
[38] Chou, K. C., Impacts of bioinformatics to medicinal chemistry, Med. Chem., 11, 218-234, (2015)
[39] Chou, K. C., An unprecedented revolution in medicinal chemistry driven by the progress of biological science, Curr. Topics Med. Chem., 17, 2337-2358, (2017)
[40] Chou, K. C.; Elrod, D. W., Bioinformatical analysis of G-protein-coupled receptors, J. Proteome Res., 1, 429-433, (2002)
[41] Chou, K. C.; Cai, Y. D., Prediction of protease types in a hybridization space, Biochem Biophys Res Comm (BBRC), 339, 1015-1020, (2006)
[42] Contreras-Torres, E., Predicting structural classes of proteins by incorporating their global and local physicochemical and conformational properties into general Chou’s PseAAC, J. Theor. Biol., 454, 139-145, (2018)
[43] Du, P.; Gu, S.; Jiao, Y., PseAAC-General: Fast building various modes of general form of Chou’s pseudo amino acid composition for large-scale protein datasets, Int. J. Molecular Sci., 15, 3495-3506, (2014)
[44] Du, P.; Wang, X.; Xu, C.; Gao, Y., PseAAC-Builder: A cross-platform stand-alone program for generating various special Chou’s pseudo amino acid compositions, Anal. Biochem., 425, 117-119, (2012), doi: S0003-2697(12)00181-9 [pii] 10.1016/j.ab.2012.03.015
[45] Exarchos, K. P.; Exarchos, T. P.; Papaloukas, C.; Troganis, A. N.; Fotiadis, D. I., Predicting peptide bond conformation using feature selection and the Naive Bayes approach, Engineering in Medicine and Biology Society, 5009-5012, (2007), 2007. EMBS 2007. 29th Annual International Conference of the IEEE. IEEE
[46] Fass, D., Disulfide bonding in protein biophysics, Ann. Rev. Biophys., 41, 63-79, (2012)
[47] Feng, P.-M.; Lin, H.; Chen, W., Identification of antioxidants from sequence information using Naive Bayes, Comput. Math. Methods Med., 2013, (2013)
[48] Feng, P.-M.; Ding, H.; Chen, W.; Lin, H., Naive Bayes classifier with feature selection to identify phage virion proteins, Comput. Math. Methods Med., 2013, (2013) · Zbl 1275.92017
[49] Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H.; Chou, K. C., iRNA-PseColl: Identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC, Mol. Therapy - Nucleic Acids, 7, 155-163, (2017)
[50] Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H.; Chou, K.-C., iRNA-PseColl: Identifying the Occurrence Sites of Different RNA Modifications by Incorporating Collective Effects of Nucleotides into PseKNC, Mol. Therapy-Nucleic Acids, 7, 155-163, (2017)
[51] Javed, F.; Hayat, M., Predicting subcellular localizations of multi-label proteins by incorporating the sequence features into Chou’s PseAAC, Genomics, (2018)
[52] Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.-C., iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset, Anal. Biochem., 497, 48-56, (2016)
[53] Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.-C., pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach, J. Theor. Biol., 394, 223-230, (2016) · Zbl 1343.92153
[54] Jia, J.; Li, X.; Qiu, W.; Xiao, X.; Chou, K.-C., iPPI-PseAAC (CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC, J. Theor. Biol., 460, 195-203, (2019)
[55] Ju, Z.; Wang, S.-Y., Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou’s general pseudo amino acid composition, Gene, 664, 78-83, (2018)
[56] Ju, Z.; Wang, S. Y., Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou’s general pseudo amino acid composition, Gene, 664, 78-83, (2018)
[57] Khan, Y. D.; Ahmad, F.; Anwar, M. W., A neuro-cognitive approach for iris recognition using back propagation, World Appl. Sci. J., 16, 678-685, (2012)
[58] Khan, Y. D.; Ahmed, F.; Khan, S. A., Situation recognition using image moments and recurrent neural networks, Neural Comput. Appl., 24, 1519-1529, (2014)
[59] Khan, Y. D.; Khan, S. A.; Ahmad, F.; Islam, S., Iris recognition using image moments and k-means algorithm, Sci. World J., 2014, (2014)
[60] Khan, Y. D.; Khan, N. S.; Farooq, S.; Abid, A.; Khan, S. A.; Ahmad, F.; Mahmood, M. K., An Efficient Algorithm for Recognition of Human Actions, Sci. World J., 2014, 1-11, (2014)
[61] Krishnan, M. S., Using Chou’s general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains, J. Theor. Biol., 445, 62-74, (2018)
[62] Li, F.; Wang, Y.; Li, C.; Marquez-Lago, T. T.; Leier, A.; Rawlings, N. D.; Haffari, G.; Revote, J.; Akutsu, T.; Chou, K.-C., Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods, Briefings Bioinform, (2018), Epub ahead of print
[63] Liang, Y.; Zhang, S., Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou’s general PseAAC via Kullback-Leibler divergence, J Theor Biol, 454, 22-29, (2018)
[64] Lin, H.; Deng, E.-Z.; Ding, H.; Chen, W.; Chou, K.-C., iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition, Nucleic Acids Res., 42, 12961-12972, (2014)
[65] Lin, H.; Ding, C.; Song, Q.; Yang, P.; Ding, H.; Deng, K.-J.; Chen, W., The prediction of protein structural class using averaged chemical shifts, J. Biomol. Struct. Dyn., 29, 1147-1153, (2012)
[66] Lin, W. Z.; Fang, J. A.; Xiao, X.; Chou, K. C., iDNA-Prot: Identification of DNA Binding Proteins Using Random Forest with Grey Model, PLoS ONE, 6, e24756, (2011), PONE-D-11-14058 [pii]
[67] Liu, B.; Long, R.; Chou, K.-C., iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework, Bioinformatics, 32, 2411-2418, (2016)
[68] Liu, B.; Yang, F.; Chou, K. C., 2L-piRNA: A two-layer ensemble classifier for identifying piwi-interacting RNAs and their function, Mol. Therapy - Nucleic Acids, 7, 267-277, (2017)
[69] Liu, B.; Wu, H.; Chou, K. C., Pse-in-One 2.0: An improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein Sequences, Nat. Sci., 9, 67-91, (2017)
[70] Liu, B.; Yang, F.; Chou, K.-C., 2L-piRNA: A Two-Layer Ensemble Classifier for Identifying Piwi-Interacting RNAs and Their Function, Mol. Therapy-Nucleic Acids, 7, 267-277, (2017)
[71] Liu, B.; Wang, S.; Long, R.; Chou, K.-C., iRSpot-EL: identify recombination spots with an ensemble learning approach, Bioinformatics, 33, 35-41, (2016)
[72] Liu, B.; Wang, S.; Long, R.; Chou, K. C., iRSpot-EL: identify recombination spots with an ensemble learning approach, Bioinformatics, 33, 35-41, (2017)
[73] Liu, B.; Yang, F.; Huang, D.-S.; Chou, K.-C., iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC, Bioinformatics, 34, 33-40, (2017)
[74] Liu, B.; Fang, L.; Long, R.; Lan, X.; Chou, K.-C., iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition, Bioinformatics, 32, 362-369, (2015)
[75] Liu, B.; Fang, L.; Long, R.; Lan, X.; Chou, K. C., iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition, Bioinformatics, 32, 362-369, (2016)
[76] Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L.; Chou, K. C., Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences, Nucleic Acids Res., 43, W65-W71, (2015)
[77] Liu, L.-M.; Xu, Y.; Chou, K.-C., iPGK-PseAAC: identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC, Med. Chem., 13, 552-559, (2017)
[78] Liu, Z.; Xiao, X.; Yu, D.-J.; Jia, J.; Qiu, W.-R.; Chou, K.-C., pRNAm-PC: Predicting N6-methyladenosine sites in RNA sequences via physical-chemical properties, Anal. Biochem., 497, 60-67, (2016)
[79] Mao, B.; Chou, K. C.; Maggiora, G. M., Topological analysis of hydrogen bonding in protein structure, Eur. J. Biochem., 188, 361-365, (1990)
[80] Martelli, P. L.; Fariselli, P.; Malaguti, L.; Casadio, R., Prediction of the disulfide bonding state of cysteines in proteins with hidden neural networks, Protein Eng., 15, 951-953, (2002)
[81] Mei, J.; Zhao, J., Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou’s general pseudo amino acid composition and motif features, J. Theor. Biol., 427, 147-153, (2018)
[82] Mei, J.; Zhao, J., Prediction of HIV-1 and HIV-2 proteins by using Chou’s pseudo amino acid compositions and different classifiers, Sci. Rep., 8, 2359, (2018)
[83] Mei, J.; Zhao, J., Prediction of HIV-1 and HIV-2 proteins by using Chou’s pseudo amino acid compositions and different classifiers, Sci. Rep., 8, 2359, (2018)
[84] Mei, J.; Fu, Y.; Zhao, J., Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition, J. Theor. Biol., 456, 41-48, (2018)
[85] O’connor, B. D.; Yeates, T. O., GDAP: a web tool for genome-wide protein disulfide bond prediction, Nucl. Acids Res., 32, W360-W364, (2004)
[86] Qiu, W.-R.; Xiao, X.; Lin, W.-Z.; Chou, K.-C., iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach, BioMed Res. Int., 2014, (2014)
[87] Qiu, W.-R.; Sun, B.-Q.; Xiao, X.; Xu, Z.-C.; Chou, K.-C., iPTM-mLys: identifying multiple lysine PTM sites and their different types, Bioinform, 32, 3116-3123, (2016)
[88] Qiu, W.-R.; Jiang, S.-Y.; Xu, Z.-C.; Xiao, X.; Chou, K.-C., iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition, Oncotarget, 8, 41178, (2017)
[89] Qiu, W.-R.; Sun, B.-Q.; Xiao, X.; Xu, Z.-C.; Jia, J.-H.; Chou, K.-C., Ikcr-pseens: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier, Genomics, 110, 5, 239-246, (2017)
[90] Qiu, W.; Li, S.; Cui, X.; Yu, Z.; Wang, M.; Du, J.; Peng, Y.; Yu, B., Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou’s pseudo-amino acid composition, J. Theor. Biol., 450, 86-103, (2018) · Zbl 1397.92228
[91] Qiu, W. R.; Sun, B. Q.; Xiao, X.; Xu, D.; Chou, K. C., iPhos‐PseEvo: Identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory, Mol. Inform., 36, 1-10, (2017)
[92] Rahman, S. M.; Shatabda, S.; Saha, S.; Kaykobad, M.; Sohel Rahman, M., DPP-PseAAC: A DNA-binding Protein Prediction model using Chou’s general PseAAC, J. Theor. Biol., 452, 22-34, (2018)
[93] Raimondi, D.; Orlando, G.; Vranken, W. F., Clustering-based model of cysteine co-evolution improves disulfide bond connectivity prediction and reduces homologous sequence requirements, Bioinformatics, 31, 1219-1225, (2014)
[94] Raimondi, D.; Orlando, G.; Vranken, W. F., An evolutionary view on disulfide bond connectivities prediction using phylogenetic trees and a simple cysteine mutation model, PloS One, 10, (2015)
[95] Sabooh, M. F.; Iqbal, N.; Khan, M.; Khan, M.; Maqbool, H. F., Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC, J. Theor. Biol., 452, 1-9, (2018) · Zbl 1397.92232
[96] Sankari, E. S.; Manimegalai, D. D., Predicting membrane protein types by incorporating a novel feature set into Chou’s general PseAAC, J. Theor. Biol., 455, 319-328, (2018)
[97] Sergienko, I.; Ryazanov, V.; Biletskyy, B.; Byts, A.; Gupal, A.; Rzhepeskyy, S., Methods to predict protein spatial structure, Cybern. Syst. Anal., 46, 34-50, (2010) · Zbl 1204.92035
[98] Song, J.-N.; Wang, M.-L.; Li, W.-J.; Xu, W.-B., Prediction of the disulfide-bonding state of cysteines in proteins based on dipeptide composition, Biochem. Biophys. Res. Commun., 318, 142-147, (2004)
[99] Song, J.; Wang, Y.; Li, F.; Akutsu, T.; Rawlings, N. D.; Webb, G. I.; Chou, K.-C., iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites, Briefings Bioinform, 1-21, (2018)
[100] Soto, C., Unfolding the role of protein misfolding in neurodegenerative diseases, Nature Rev. Neurosci., 4, 49-60, (2003)
[101] Srivastava, A.; Kumar, R.; Kumar, M., BlaPred: predicting and classifying beta-lactamase using a 3-tier prediction system via Chou’s general PseAAC, J. Theor. Biol., (2018)
[102] Vullo, A.; Frasconi, P., Disulfide connectivity prediction using recursive neural networks and evolutionary information, Bioinformatics, 20, 653-659, (2004)
[103] Wang, M. L.; Li, W. J.; Xu, W. B., Support vector machines for prediction of peptidyl prolyl cis/trans isomerization, J. Peptide Res., 63, 23-28, (2004)
[104] Xiao, X.; Cheng, X.; Su, S.; Mao, Q.; Chou, K.-C., pLoc-mGpos: incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins, Natural Sci., 9, 330, (2017)
[105] Xiao, X.; Cheng, X.; Chen, G.; Mao, Q.; Chou, K.-C., pLoc_bal-mGpos: Predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC, Genomics, (2018)
[106] Xu, Y.; Wang, Z.; Li, C.; Chou, K.-C., iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC, Med. Chem., 13, 544-551, (2017)
[107] Xu, Y.; Shao, X.-J.; Wu, L.-Y.; Deng, N.-Y.; Chou, K.-C., iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins, PeerJ, 1, e171, (2013)
[108] Xu, Y.; Wen, X.; Shao, X.-J.; Deng, N.-Y.; Chou, K.-C., iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition, Int. J. Mol. Sci., 15, 7594-7610, (2014)
[109] Yang, H.; Liu, N.; Qiu, X.; Liu, S., A new method for analysis of disulfide-containing proteins by matrix-assisted laser desorption ionization (MALDI) mass spectrometry, J. Am. Soc. Mass Spectrom., 20, 2284-2293, (2009)
[110] Yaseen, A.; Li, Y., Dinosolve: a protein disulfide bonding prediction server using context-based features to enhance prediction accuracy, BMC Bioinform., 14, S9, (2013)
[111] Zhang, L.; Kong, L., iRSpot-ADPM: Identify recombination spots by incorporating the associated dinucleotide product model into Chou’s pseudo components, J. Theor. Biol., 441, 1-8, (2018)
[112] Zhang, S.; Duan, X., Prediction of protein subcellular localization with oversampling approach and Chou’s general PseAAC, J. Theor. Biol., 437, 239-250, (2018) · Zbl 1394.92047
[113] Zhang, S.; Liang, Y., Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou’s PseAAC, J. Theor. Biol., (2018)
[114] Zhao, W.; Wang, L.; Zhang, T. X.; Zhao, Z. N.; Du, P. F., A brief review on software tools in generating Chou’s pseudo-factor representations for all types of biological sequences, Protein Pept. Lett., (2018)
[115] Zhu, L.; Yang, J.; Song, J. N.; Chou, K. C.; Shen, H. B., Improving the accuracy of predicting disulfide connectivity by feature selection, J. Comput. Chem., 31, 1478-1485, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.