×

zbMATH — the first resource for mathematics

Bifurcations of oscillatory and rotational solutions of double pendulum with parametric vertical excitation. (English) Zbl 1407.70004
Summary: This paper investigates dynamics of double pendulum subjected to vertical parametric kinematic excitation. It includes detailed bifurcation diagrams in two-parameter space (excitation’s frequency and amplitude) for both oscillations and rotations in the domain of periodic solutions.

MSC:
70E15 Free motion of a rigid body
70K50 Bifurcations and instability for nonlinear problems in mechanics
Software:
AUTO; AUTO-07P; Dynamics; GSL
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jankowski, K., Dynamics of double pendulum with parametric vertical excitation [M.S. thesis], (2011), Łódź, Poland: Łódź University of Technology, Łódź, Poland
[2] Marszal, M., Dynamics of double pendulum with parametric horizontal excitation [M.S. thesis], (2011), Łódź, Poland: Łódź University of Technology, Łódź, Poland
[3] Leven, R. W.; Koch, B. P., Chaotic behaviour of a parametrically excited damped pendulum, Physics Letters A, 86, 2, 71-74, (1981)
[4] Leven, R. W.; Pompe, B.; Wilke, C.; Koch, B.-P., Experiments on periodic and chaotic motions of a parametrically forced pendulum, Physica D. Nonlinear Phenomena, 16, 3, 371-384, (1985) · Zbl 0581.70022
[5] Horton, B.; Sieber, J.; Thompson, J. M. T.; Wiercigroch, M., Dynamics of the nearly parametric pendulum, International Journal of Non-Linear Mechanics, 46, 2, 436-442, (2011)
[6] Skeldon, A. C., Dynamics of a parametrically excited double pendulum, Physica D. Nonlinear Phenomena, 75, 4, 541-558, (1994) · Zbl 0820.34020
[7] Skeldon, A. C.; Mullin, T., Mode interaction in a double pendulum, Physics Letters A, 166, 3-4, 224-229, (1992)
[8] Yu, P.; Bi, Q., Analysis of non-linear dynamics and bifurcations of a double pendulum, Journal of Sound and Vibration, 217, 4, 691-736, (1998) · Zbl 1236.70031
[9] Stachowiak, T.; Okada, T., A numerical analysis of chaos in the double pendulum, Chaos, Solitons and Fractals, 29, 2, 417-422, (2006) · Zbl 1096.65127
[10] Samaranayake, S.; Bajaj, A. K., Bifurcations in the dynamics of an orthogonal double pendulum, Nonlinear Dynamics, 4, 6, 605-633, (1993)
[11] Sartorelli, J. C.; Lacarbonara, W., Parametric resonances in a base-excited double pendulum, Nonlinear Dynamics, 69, 4, 1679-1692, (2012)
[12] Belyakov, A. O., On rotational solutions for elliptically excited pendulum, Physics Letters A, 375, 25, 2524-2530, (2011) · Zbl 1242.70023
[13] Thomsen, J. J., Chaotic dynamics of the partially follower-loaded elastic double pendulum, Journal of Sound and Vibration, 188, 3, 385-405, (1995) · Zbl 1232.70033
[14] Scheidl, R.; Troger, H.; Zeman, K., Coupled flutter and divergence bifurcation of a double pendulum, International Journal of Non-Linear Mechanics, 19, 2, 163-176, (1984) · Zbl 0563.70024
[15] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D. Nonlinear Phenomena, 16, 3, 285-317, (1985) · Zbl 0585.58037
[16] Doedel, E. J.; Oldeman, B. E., Auto-07P: Continuation and Bifurcation Software for Ordinary Differential Equations, (2009), Montreal, Canada: Concordia University, Montreal, Canada
[17] Galassi, M.; Davies, J.; Theiler, J.; Gough, B.; Jungman, G.; Alken, P.; Booth, M.; Rossi, F., GNU Scientific Library, Reference Manual, Edition 1.15, for GSL Version 1.15, (2011)
[18] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory. Number t. Elements of Applied Bifurcation Theory. Number t, Applied Mathematical Sciences, 112, (2004), New York, NY, USA: Springer, New York, NY, USA · Zbl 1082.37002
[19] Miles, J., Resonance and symmetry breaking for the pendulum, Physica D. Nonlinear Phenomena, 31, 2, 252-268, (1988) · Zbl 0656.70024
[20] Brzeski, P.; Perlikowski, P.; Yanchuk, S.; Kapitaniak, T., The dynamics of the pendulum suspended on the forced Duffing oscillator, Journal of Sound and Vibration, 331, 24, 5347-5357, (2012)
[21] Kapitaniak, M.; Perlikowski, P.; Kapitaniak, T., Synchronous motion of two vertically excited planar elastic pendula, Communications in Nonlinear Science and Numerical Simulation, 18, 8, 2088-2096, (2013) · Zbl 1311.70014
[22] Nusse, H. E.; Yorke, J. A., Dynamics: Numerical Explorations. Number t. Dynamics: Numerical Explorations. Number t, Applied Mathematical Sciences, 101, (1998), New York, NY, USA: Springer, New York, NY, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.