A data-driven control design approach for freeway traffic ramp metering with virtual reference feedback tuning. (English) Zbl 1407.90102

Summary: ALINEA is a simple, efficient, and easily implemented ramp metering strategy. Virtual reference feedback tuning (VRFT) is most suitable for many practical systems since it is a “one-shot” data-driven control design methodology. This paper presents an application of VRFT to a ramp metering problem of freeway traffic system. When there is not enough prior knowledge of the controlled system to select a proper parameter of ALINEA, the VRFT approach is used to optimize the ALINEA’s parameter by only using a batch of input and output data collected from the freeway traffic system. The extensive simulations are built on both the macroscopic MATLAB platform and the microscopic PARAMICS platform to show the effectiveness and applicability of the proposed data-driven controller tuning approach.


90B20 Traffic problems in operations research
93C10 Nonlinear systems in control theory


Full Text: DOI


[1] Papageorgiou, M.; Kotsialos, A., Freeway ramp metering: an overview, IEEE Transactions on Intelligent Transportation Systems, 3, 4, 271-281, (2002)
[2] Varaiya, P., Reducing highway congestion: an empirical approach, European Journal of Control, 11, 4-5, 301-309, (2005) · Zbl 1293.93574
[3] Kotsialos, A.; Papageorgiou, M.; Mangeas, M.; Haj-Salem, H., Coordinated and integrated control of motorway networks via non-linear optimal control, Transportation Research C, 10, 1, 65-84, (2002)
[4] Chang, T. H.; Li, Z. Y., Optimization of mainline traffic via an adaptive co-ordinated ramp-metering control model with dynamic OD estimation, Transportation Research C, 10, 2, 99-120, (2002)
[5] Ji, H. B., Freeway traffic systems: prediction and control, Proceedings of the IEEE 46th Vehicular Technology Conference on Mobile Technology for the Human Race
[6] Su, X. J.; Shi, P.; Wu, L. G.; Song, Y. D., A novel control design on discrete-time takagi-sugeno fuzzy systems with time-varying delays, IEEE Transactions on Fuzzy Systems, 21, 4, 655-671, (2013)
[7] Wu, L. G.; Zheng, W. X.; Gao, H. J., Dissipativity-based sliding mode control of switched stochastic systems, IEEE Transactions on Automatic Control, 58, 3, 785-791, (2013) · Zbl 1369.93585
[8] Wu, L. G.; Su, X. J.; Shi, P., Sliding mode control with bounded \(L_2\) gain performance of Markovian jump singular time-delay systems, Automatica, 48, 8, 1929-1933, (2012) · Zbl 1268.93037
[9] Vesely, V.; Osusky, J., Robust multivariable generalized predictive control design, International Journal of Innovative Computing, Information and Control, 9, 8, 3377-3390, (2013)
[10] Soltanpour, M. R.; Zolfaghari, B.; Soltani, M.; Khooban, M. H., Fuzzy sliding mode control design for a class of nonlinear systems with structured and unstructured uncertainties, International Journal of Innovative Computing, Information and Control, 9, 7, 2713-2726, (2013)
[11] Silva, G. J.; Datta, A.; Bhattacharyya, S. P., New results on the synthesis of PID controllers, IEEE Transactions on Automatic Control, 47, 2, 241-252, (2002) · Zbl 1364.93268
[12] Hou, Z. S., Nonparametric Models and Its Adaptive Control Theory, (1999), Beijing, China: Science Press, Beijing, China
[13] Hou, Z. S.; Jin, S. T., A novel data-driven control approach for a class of discrete-time nonlinear systems, IEEE Transactions on Control Systems Technology, 19, 6, 1549-1558, (2011)
[14] Hou, Z. S.; Jin, S. T., Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems, IEEE Transactions on Neural Networks, 22, 12, 2173-2188, (2011)
[15] Arimoto, S.; Kawamura, S.; Miyazaki, F., Bettering operation of robots by learning, Journal of Robotic Systems, 1, 2, 123-140, (1984)
[16] Ahn, H. S.; Chen, Y. Q.; Moore, K. L., Iterative learning control: brief survey and categorization, IEEE Transactions on Systems, Man and Cybernetics C, 37, 6, 1099-1121, (2007)
[17] Xu, J. X., A survey on iterative learning control for nonlinear systems, International Journal of Control, 84, 7, 1275-1294, (2011) · Zbl 1227.93053
[18] Hou, Z. S.; Xu, J. X.; Yan, J. W., An iterative learning approach for density control of freeway traffic flow via ramp metering, Transportation Research C, 16, 1, 71-97, (2008)
[19] Hou, Z. S.; Xu, J. X.; Zhong, H. W., Freeway traffic control using iterative learning control-based ramp metering and speed signaling, IEEE Transactions on Vehicular Technology, 56, 2, 466-477, (2007)
[20] Safonov, M. G.; Tsao, T. C., The unfalsified control concept: a direct path from experiment to controller, Feedback Control, Nonlinear Systems, and Complexity. Feedback Control, Nonlinear Systems, and Complexity, Lecture Notes in Control and Information Sciences, 202, 196-214, (1995), London, UK: Springer, London, UK · Zbl 0825.93031
[21] Savaresi, S. M.; Guardabassi, G. O., Approximate I/O feedback linearization of discrete-time non-linear systems via virtual input direct design, Automatica, 34, 6, 715-722, (1998) · Zbl 0945.93522
[22] Campi, M. C.; Lecchini, A.; Savaresi, S. M., Virtual reference feedback tuning (VRFT): a new direct approach to the design of feedback controllers, Proceedings of the 39th IEEE Confernce on Decision and Control
[23] Campi, M. C.; Lecchini, A.; Savaresi, S. M., Virtual reference feedback tuning: a direct method for the design of feedback controllers, Automatica, 38, 8, 1337-1346, (2002) · Zbl 1008.93037
[24] Campi, M. C.; Savaresi, S. M., Direct nonlinear control desaign: the virtual reference feedback tuning (VRFT) approach, IEEE Transactions on Automatic Control, 51, 1, 14-27, (2006) · Zbl 1366.93251
[25] Hjalmarsson, H.; Gevers, M.; Gunnarsson, S.; Lequin, O., Iterative feedback tuning: theory and applications, IEEE Control Systems Magazine, 18, 4, 26-41, (1998)
[26] Hjalmarsson, H., Iterative feedback tuning—an overview, International Journal of Adaptive Control and Signal Processing, 16, 5, 373-395, (2002) · Zbl 1048.93057
[27] Hjalmarsson, H., From experiment design to closed-loop control, Automatica, 41, 3, 393-438, (2005) · Zbl 1079.93016
[28] Papageorgiou, M.; Hadj-Salem, H.; Blosseville, J. M., ALINEA: a local feedback control law for on-ramp metering, Transportation Research Record, 1320, 58-64, (1991)
[29] Papageorgiou, M.; Hadj-Salem, H.; Middelham, F., ALINEA local ramp metering: summary of field results, Transportation Research Record, 1603, 90-98, (1997)
[30] Chi, R. H.; Hou, Z. S.; Jin, S. T.; Wang, D. W., A data-driven iterative feedback tuning approach of ALINEA for freeway traffic ramp metering with PARAMICS simulations, IEEE Transactions on Industrial Informatics, 9, 4, 2310-2317, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.