×

zbMATH — the first resource for mathematics

Languages for triples. Bicategories and braided monoidal categories. (English) Zbl 0702.18005
This is a continuation of the author’s work “Languages for monoidal categories” [J. Pure Appl. Algebra 59, 61-85 (1989; Zbl 0693.18003)] and takes a model-theoretic approach to obtain languages as per the title of the paper.
Reviewer: R.H.Street

MSC:
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
18C15 Monads (= standard construction, triple or triad), algebras for monads, homology and derived functors for monads
18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
Citations:
Zbl 0693.18003
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] 1 E. Artin , Theory of braids , Ann. of Math. 48 ( 1947 ), 101 - 136 . MR 19087 | Zbl 0030.17703 · Zbl 0030.17703
[2] 2 M. Barr & C. Wells , Toposes. triples and theories . Springer 1985 . MR 771116 | Zbl 0567.18001 · Zbl 0567.18001
[3] 3 C.B. Jay , Languages for monoidal categories . J. Pure & Appl. Alg. 59 ( 1989 ). 61 - 85 . MR 1007914 | Zbl 0693.18003 · Zbl 0693.18003
[4] 4 A. Joyal & R. Street , Braided monoidal categories . Macquarie Math. Reports. 1986 . · Zbl 0817.18007
[5] 5 G.M. Kelly & R. Street , Review of the elements of 2-categories . Lecture Notes in Math. 420 . Springer ( 1974 ). MR 357542 | Zbl 0334.18016 · Zbl 0334.18016
[6] 6 S. Mac Lane , Natural associativity and commutativity. Rice Univ . Studies 49 ( 1963 ), 28 - 46 . MR 170925 | Zbl 0244.18008 · Zbl 0244.18008
[7] 7 S. Mac Lane . Categories for the working mathematician . Springer 1971 . MR 354798 | Zbl 0906.18001 · Zbl 0906.18001
[8] 8 S. Mac Lane & R. Pare , Coherence for bicategories and indexed categories , J. Pure & Appl. Alg. 37 ( 1985 ). 59 - 80 . MR 794793 | Zbl 0567.18003 · Zbl 0567.18003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.