×

Isotropic singularities of solutions of nonlinear elliptic inequalities. (English) Zbl 0702.35083

This paper concerns the behaviour near zero of the positive solution of \(\Delta u\leq g(u)+f\) where \(f\) is radial and \(g\) satisfies the weak singularities existence condition. An application is made to the solutions of \(\Delta u\pm g(u)=0\).

MSC:

35J60 Nonlinear elliptic equations
35A20 Analyticity in context of PDEs
35A08 Fundamental solutions to PDEs
35B09 Positive solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] Aviles, P., On Isolated Singularities in Some Nonlinear Partial Differential Equations, Indiana Univ. Math. J., Vol. 32, 773-791 (1983) · Zbl 0548.35042
[2] Aviles, P., Local Behaviour of Solutions of Some Elliptic Equations, Comm. Math. Phys., Vol. 108, 177-192 (1987) · Zbl 0617.35040
[3] Brezis, H., Some Variational Problems of the Thomas-Fermi Type, (Cottle, R. W.; Gianessi, F.; Lions, J. L., Variational Inequalities and Complementary Conditions (1980), Wiley-Interscience), 53-73, Ph. Benilan and H. Brezis, Nonlinear Problems Related to the Thomas-Fermi Equation (in preparation). See also
[4] Brezis, H.; Lieb, E. T., Long Range Atomic Potentials in Thomas-Fermi Theory, Comm. Math. Phys., Vol. 65, 231-246 (1980) · Zbl 0416.35066
[5] Brezis, H.; Lions, P. L., A Note on Isolated Singularities for Linear Elliptic Equations, Mathematical Analysis and Applications, Vol. 7A, 263-266 (1981)
[7] Fowler, R. H., Further Studies in Emden’s and Similar Differential Equations, Quart. J. Math., Vol. 2, 259-288 (1931) · Zbl 0003.23502
[8] Gidas, B.; Spruck, J., Global and Local Behaviour of Positive Solutions of Nonlinear Eliptic Equations, Comm. Pure Appl. Math., Vol. 34, 525-598 (1980) · Zbl 0465.35003
[9] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Springer-Verlag · Zbl 0691.35001
[10] Guedda, M.; Veron, L., Local and Global Properties of Solutions of Quasilinear Elliptic Equations, J. Diff. Equ., Vol. 75 (1988) · Zbl 0661.35029
[11] Lions, P. L., Isolated Singularities in Semilinear Problems, J. Diff. Equ., Vol. 38, 441-550 (1980) · Zbl 0458.35033
[12] Ni, W. M.; Serrin, J., Nonexistence Theorems for Singular Solutions of Quasilinear Partial Differential Equations, Comm. Pure Applied Math., Vol. 39, 379-399 (1986) · Zbl 0602.35031
[13] Nitsche, J., Über die isoliertien Singularitäten der Lösungen von Δ \(u = e^u, e^u\), Math. Z. Bd., Vol. 69, 316-324 (1957) · Zbl 0078.09201
[14] Osserman, R., On the Inequality Δ \(u\) ≧ \(f(u)\), Pacific J. Math., Vol. 7, 1641-1647 (1957) · Zbl 0083.09402
[15] Richard, Y., Solutions Singulières d’Équations Elliptiques Semi-Linéaires, Ph. D. Thesis (1987), Univ. Tours
[16] Richard, Y.; Veron, L., Un résultat d’isotropie pour des singularités d’inéquations elliptiques non linéaires, C.R. Acad. Sci. Paris, 304, série I, 423-426 (1987) · Zbl 0634.35026
[17] Serrin, J., Local Behaviour of Solutions of Quasilinear Equations, Acta Math., Vol. 111, 247-302 (1964) · Zbl 0128.09101
[18] Serrin, J., Isolated Singulanties of Solutions of Quasihnear Equations, Acta Math., Vol. 113, 219-240 (1965) · Zbl 0173.39202
[19] Vazquez, J. L., An a priori Interior Estimate for the Solutions of a Nonlinear Problem Representing Weak Diffusion, Nonlinear Anal., Vol. 5, 95-103 (1981) · Zbl 0446.35018
[20] Vazquez, J. L., On a Semihnear Equation in \(ℝ^2\) Involving Bounded Measures, Proc. Roy. Soc. Edinburgh, Vol. 95A, 181-202 (1983) · Zbl 0536.35025
[21] Vazquez, J. L.; Veron, L., Singularities of Elliptic Equations with an Exponential Nonlineanty, Math. Ann., Vol. 269, 119-135 (1984) · Zbl 0567.35034
[22] Vazquez, J. L.; Veron, L., Isolated Singulanties of Some Semihnear Elliptic Equations, J. Diff. Equ., Vol. 60, 301-321 (1985)
[23] Veron, L., Singular Solutions of Some Nonlinear Elliptic Equations, Nonlinear Anal., Vol. 5, 225-242 (1981) · Zbl 0457.35031
[24] Veron, L., Weak and Strong Singulanties of Nonlinear Elliptic Equations, Proc. Symp. Pure Math., Vol. 45, 2, 477-495 (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.