zbMATH — the first resource for mathematics

The thermodynamic formalism for expanding maps. (English) Zbl 0702.58056
Summary: Let f: \(X\mapsto X\) be an expanding map of a compact space (small distances are increased by a factor \(>1)\). A generating function \(\zeta\) (z) is defined which counts f-periodic points with a weight. One can express \(\zeta\) in terms of nonstandard “Fredholm determinants” of certain “transfer operators”, which can be studied by methods borrowed from statistical mechanics. In this paper we review the spectral properties of the transfer operators and the corresponding analytic properties of \(\zeta\) (z). Gibbs distributions and applications to Julia sets are also discussed. Some new results are proved, and some natural conjectures are proposed.

37D99 Dynamical systems with hyperbolic behavior
82B30 Statistical thermodynamics
37E99 Low-dimensional dynamical systems
Full Text: DOI
[1] Baladi, V., Keller, G.: Zeta functions and transfer operators for piecewise monotone transformations. Preprint · Zbl 0703.58048
[2] Bowen, R.: Markov partitions for Axiom A diffeomorphisms. Trans. Am. Math. Soc.154, 377-397 (1971) · Zbl 0212.29103
[3] Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics, vol.470. Berlin, Heidelberg, New York: Springer 1975 · Zbl 0308.28010
[4] Bowen, R.: On Axiom A Diffeomorphisms. CBMS Regional Conf. Series vol.35, Providence, R.I.: Am. Math. Soc. 1978 · Zbl 0383.58010
[5] Bowen, R., Ruelle, D.: The ergodic theory of Axiom A flows. Invent. Math.29, 181-202 (1975) · Zbl 0311.58010 · doi:10.1007/BF01389848
[6] Brolin, H.: Invariant sets under iteration of rational functions. Ark. Mat.6, 103-144 (1965) · Zbl 0127.03401 · doi:10.1007/BF02591353
[7] Coven, E. M., Reddy, W. L.: Positively expansive maps of compact manifolds. In: Global theory of dynamical systems. Lect. Notes in Mathematics, vol.819, pp. 96-110. Berlin, Heidelberg, New York: Springer 1980 · Zbl 0445.58021
[8] Fried, D.: The zeta functions of Ruelle and Selberg I. Ann. Sci. E.N.S.19, 491-517 (1986) · Zbl 0609.58033
[9] Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. vol.16. Providence, R.I., 1955
[10] Haydn, N.: Meromorphic extension of the zeta function for Axiom A flows. Preprint · Zbl 0694.58035
[11] Manning, A.: Axiom A diffeomorphisms have rational zeta functions. Bull. Lond. Math. Soc.3, 215-220 (1971) · Zbl 0219.58007 · doi:10.1112/blms/3.2.215
[12] Nussbaum, R. D.: The radius of the essential spectrum. Duke Math. J.37, 473-478 (1970) · Zbl 0216.41602 · doi:10.1215/S0012-7094-70-03759-2
[13] Parry, W., Pollicott, M.: An analogue of the prime number theorem for closed orbits of Axiom A flows. Ann. Math.118, 573-591 (1983) · Zbl 0537.58038 · doi:10.2307/2006982
[14] Pollicott, M.: A complex Ruelle-Perron-Frobenius theorem and two counterexamples. Ergod. Th. Dynam. Syst.4, 135-146 (1984) · Zbl 0575.47009
[15] Pollicott, M.: Meromorphic extensions of generalized zeta functions. Invent. Math.85, 147-164 (1986) · Zbl 0604.58042 · doi:10.1007/BF01388795
[16] Pollicott, M.: The differential zeta function for Axiom A attractors. Preprint · Zbl 0702.58040
[17] Ruelle, D.: A measure associated with Axiom A attractors. Am. J. Math.98, 619-654 (1976) · Zbl 0355.58010 · doi:10.2307/2373810
[18] Ruelle, D.: Zeta-functions for expanding maps and Anosov flows. Invent. Math.34, 231-242 (1976) · Zbl 0329.58014 · doi:10.1007/BF01403069
[19] Ruelle, D.: Generalized zeta-functions for axiom A basic sets. Bull. Am. Math. Soc.82, 153-156 (1976) · Zbl 0316.58016 · doi:10.1090/S0002-9904-1976-14003-7
[20] Ruelle, D.: Thermodynamic formalism. Encyclopedia of Math. and its Appl., vol.5, Reading, Mass: Addison-Wesley 1978 · Zbl 0401.28016
[21] Ruelle, D.: Repellers for real analytic maps. Ergod. Th. Dynam. Syst.2, 99-107 (1982) · Zbl 0506.58024 · doi:10.1017/S0143385700009603
[22] Ruelle, D.: One-dimensional Gibbs states and Axiom A diffeomorphisms. J. Differ. Geom.25, 117-137 (1987) · Zbl 0628.58043
[23] Ruelle, D.: Elements of differentiable dynamics and bifurcation theory. Boston: Academic Press 1989 · Zbl 0684.58001
[24] Sinai, Ya. G.: Markov partitions andC-diffeomorphisms. Funkts. Analiz i ego Pril.2, 64-89 (1968), English translation: Funct. Anal. Appl.2, 61-82 (1968)
[25] Sinai, Ya. G.: Construction of Markov partitions. Funkts. Analiz i ego Pril.2, 70-80 (1968). English translation: Funct. Anal. Appl.2, 245-253 (1968)
[26] Sinai, Ya. G.: Gibbs measures in ergodic theory. Usp. Mat. Nauk27, 21-64 (1972), English translation. Russ. Math. Surv.27, 21-69 (1972) · Zbl 0246.28008
[27] Tangerman, F.: Meromorphic continuation of Ruelle zeta functions. Boston University thesis, 1986, (unpublished)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.