×

zbMATH — the first resource for mathematics

iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components. (English) Zbl 1406.92217
Summary: The 2’-O-methylation transferase is involved in the process of 2’-O-methylation. In catalytic processes, the 2-hydroxy group of the ribose moiety of a nucleotide accept a methyl group. This methylation process is a post-transcriptional modification, which occurs in various cellular RNAs and plays a vital role in regulation of gene expressions at the post-transcriptional level. Through biochemical experiments 2’-O-methylation sites produce good results but these biochemical process and exploratory techniques are very expensive. Thus, it is required to develop a computational method to identify 2’-O-methylation sites. In this work, we proposed a simple and precise convolution neural network method namely: iRNA-PseKNC(2methyl) to identify 2’-O-methylation sites. The existing techniques use handcrafted features, while the proposed method automatically extracts the features of 2’-O-methylation using the proposed convolution neural network model. The proposed prediction iRNA-PseKNC(2methyl) method obtained 98.27% of accuracy, 96.29% of sensitivity, 100% of specificity, and 0.965 of MCC on Home sapiens dataset. The reported outcomes present that our proposed method obtained better outcomes than existing method in terms of all evaluation parameters. These outcomes show that iRNA-PseKNC(2methyl) method might be beneficial for the academic research and drug design.
MSC:
92C40 Biochemistry, molecular biology
68T05 Learning and adaptive systems in artificial intelligence
92D20 Protein sequences, DNA sequences
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aoki, G.; Sakakibara, Y., Convolutional neural networks for classification of alignments of non-coding RNA sequences, Bioinformatics, 34, i237-i244, (2018)
[2] Bachellerie, J.-P.; Cavaille, J.; Hüttenhofer, A., The expanding snoRNA world, Biochimie, 84, 775-790, (2002)
[3] Cai, L.; Huang, T.; Su, J.; Zhang, X.; Chen, W.; Zhang, F.; He, L.; Chou, K.-C., Implications of newly identified brain eQTL genes and their interactors in Schizophrenia, Mol. Ther.-Nucleic Acids, 12, 433-442, (2018)
[4] Cai, Y.-D.; Feng, K.-Y.; Lu, W.-C.; Chou, K.-C., Using LogitBoost classifier to predict protein structural classes, J. Theor. Biol., 238, 172-176, (2006)
[5] Cao, D.-S.; Xu, Q.-S.; Liang, Y.-Z., propy: a tool to generate various modes of Chou’s PseAAC, Bioinformatics, 29, 960-962, (2013)
[6] Chen, W.; Lin, H.; Chou, K.-C., Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences, Mol. Biosyst., 11, 2620-2634, (2015)
[7] Chen, W.; Feng, P.-M.; Lin, H.; Chou, K.-C., iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition, Nucleic Acids Res., 41, e68, (2013)
[8] Chen, W.; Lei, T.-Y.; Jin, D.-C.; Lin, H.; Chou, K.-C., PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition, Anal. Biochem., 456, 53-60, (2014)
[9] Chen, W.; Feng, P.; Ding, H.; Lin, H.; Chou, K.-C., iRNA-methyl: identifying N6-methyladenosine sites using pseudo nucleotide composition, Anal. Biochem., 490, 26-33, (2015)
[10] Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K.-C., iRNA-PseU: identifying RNA pseudouridine sites, Mol. Ther.-Nucleic Acids, 5, (2016)
[11] Chen, W.; Feng, P.; Tang, H.; Ding, H.; Lin, H., Identifying 2’-O-methylationation sites by integrating nucleotide chemical properties and nucleotide compositions, Genomics, 107, 255-258, (2016)
[12] Chen, W.; Ding, H.; Zhou, X.; Lin, H.; Chou, K.-C., iRNA (m6A)-PseDNC: identifying N6-methyladenosine sites using pseudo dinucleotide composition, Anal. Biochem., 561, 59-65, (2018)
[13] Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.-C., iRNA-3typeA: identifying three types of modification at RNA’s adenosine sites, Mol. Ther.-Nucleic Acids, 11, 468-474, (2018)
[14] Cheng, X.; Xiao, X.; Chou, K.-C., pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information, Bioinformatics, 34, 1448-1456, (2017)
[15] Cheng, X.; Xiao, X.; Chou, K.-C., pLoc-mEuk: predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC, Genomics, 110, 50-58, (2018)
[16] Cheng, X.; Xiao, X.; Chou, K.-C., pLoc-mGneg: predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC, Genomics, 110, 231-239, (2018)
[17] Cheng, X.; Zhao, S.-G.; Lin, W.-Z.; Xiao, X.; Chou, K.-C., pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites, Bioinformatics, 33, 3524-3531, (2017)
[18] Chollet, F., Keras: Deep learning library for theano and tensorflow, (2015), 7
[19] Chou, K.-C., Prediction of signal peptides using scaled window, Peptides, 22, 1973-1979, (2001)
[20] Chou, K.-C., Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology, Curr. Proteomics, 6, 262-274, (2009)
[21] Chou, K.-C., Some remarks on protein attribute prediction and pseudo amino acid composition, J. Theor. Biol., 273, 236-247, (2011) · Zbl 1405.92212
[22] Chou, K.-C., Impacts of bioinformatics to medicinal chemistry, Med. Chem., 11, 218-234, (2015)
[23] Chou, K.-C., An unprecedented revolution in medicinal chemistry driven by the progress of biological science, Curr. Top. Med. Chem., 17, 2337-2358, (2017)
[24] Chou, K.-C.; Elrod, D. W., Bioinformatical analysis of G-protein-coupled receptors, J. Proteome Res., 1, 429-433, (2002)
[25] Chou, K.-C.; Shen, H.-B., Recent advances in developing web-servers for predicting protein attributes, Nat. Sci., 1, 63, (2009)
[26] Chou, K.-C.; Cheng, X.; Xiao, X., pLoc_bal-mHum: predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset, Genomics, (2018)
[27] Chou, K. C., Prediction of protein cellular attributes using pseudo‐amino acid composition, Proteins, 43, 246-255, (2001)
[28] Chou, K. C.; Cai, Y. D., Prediction and classification of protein subcellular location—sequence‐order effect and pseudo amino acid composition, J. Cell. Biochem., 90, 1250-1260, (2003)
[29] Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P., Natural language processing (almost) from scratch, J. Mach. Learn. Res., 12, 2493-2537, (2011) · Zbl 1280.68161
[30] Decatur, W. A.; Fournier, M. J., rRNA modifications and ribosome function, Trends Biochem. Sci., 27, 344-351, (2002)
[31] Dong, Z.-W.; Shao, P.; Diao, L.-T.; Zhou, H.; Yu, C.-H.; Qu, L.-H., RTL-P: a sensitive approach for detecting sites of 2’-O-methylation in RNA molecules, Nucleic Acids Res., 40, e157, (2012)
[32] Du, P.; Wang, X.; Xu, C.; Gao, Y., PseAAC-Builder: a cross-platform stand-alone program for generating various special Chou’s pseudo-amino acid compositions, Anal. Biochem., 425, 117-119, (2012)
[33] Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H.; Chou, K.-C., iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC, Mol. Ther.-Nucleic Acids, 7, 155-163, (2017)
[34] Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W.; Chou, K.-C., iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC, Genomics, (2018)
[35] Hayat, M.; Khan, A., Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition, J. Theor. Biol., 271, 10-17, (2011) · Zbl 1405.92217
[36] Hayat, M.; Tahir, M., PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine, Mol. Biosyst., 11, 2255-2262, (2015)
[37] Hu, L.; Huang, T.; Shi, X.; Lu, W.-C.; Cai, Y.-D.; Chou, K.-C., Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties, PLoS One, 6, e14556, (2011)
[38] Jia, C.; Lin, X.; Wang, Z., Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile Bayes and Chou’s pseudo amino acid composition, Int. J. Mol. Sci., 15, 10410-10423, (2014)
[39] Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.-C., iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset, Anal. Biochem., 497, 48-56, (2016)
[40] Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.-C., pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach, J. Theor. Biol., 394, 223-230, (2016) · Zbl 1343.92153
[41] Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.-C., iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC, Oncotarget, 7, 34558, (2016)
[42] Jia, J.; Zhang, L.; Liu, Z.; Xiao, X.; Chou, K.-C., pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC, Bioinformatics, 32, 3133-3141, (2016)
[43] Jia, J.; Li, X.; Qiu, W.; Xiao, X.; Chou, K.-C., iPPI-PseAAC (CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC, J. Theor. Biol., 460, 195-203, (2019)
[44] Ju, Z.; He, J.-J., Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou’s general PseAAC, J. Mol. Graph. Model., 77, 200-204, (2017)
[45] Ju, Z.; Wang, S.-Y., Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou’s general pseudo amino acid composition, Gene, 664, 78-83, (2018)
[46] Ju, Z.; Cao, J.-Z.; Gu, H., Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou׳s general PseAAC, J. Theor. Biol., 397, 145-150, (2016)
[47] Kiss, T., Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions, Cell, 109, 145-148, (2002)
[48] Li, F.; Li, C.; Marquez-Lago, T. T.; Leier, A.; Akutsu, T.; Purcell, A. W.; Ian Smith, A.; Lithgow, T.; Daly, R. J.; Song, J., Quokka: a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome, Bioinformatics, (2018)
[49] Li, F.; Wang, Y.; Li, C.; Marquez-Lago, T. T.; Leier, A.; Rawlings, N. D.; Haffari, G.; Revote, J.; Akutsu, T.; Chou, K.-C., Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods, Brief. Bioinform, (2018)
[50] Li, J.; Yang, Z.; Yu, B.; Liu, J.; Chen, X., Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis, Curr. Biol., 15, 1501-1507, (2005)
[51] Liu, B.; Wu, H.; Chou, K.-C., Pse-in-One 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences, Nat. Sci., 9, 67, (2017)
[52] Liu, B.; Yang, F.; Chou, K.-C., 2L-piRNA: a two-layer ensemble classifier for identifying piwi-interacting RNAs and their function, Mol. Ther.-Nucleic Acids, 7, 267-277, (2017)
[53] Liu, B.; Wang, S.; Long, R.; Chou, K.-C., iRSpot-EL: identify recombination spots with an ensemble learning approach, Bioinformatics, 33, 35-41, (2016)
[54] Liu, B.; Yang, F.; Huang, D.-S.; Chou, K.-C., iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC, Bioinformatics, 34, 33-40, (2017)
[55] Liu, B.; Li, K.; Huang, D.-S.; Chou, K.-C., iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach, Bioinformatics, (2018)
[56] Liu, B.; Weng, F.; Huang, D.-S.; Chou, K.-C., iRO-3wPseKNC: identify DNA replication origins by three-window-based PseKNC, Bioinformatics, 1, 8, (2018)
[57] Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L.; Chou, K.-C., Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences, Nucleic Acids Res., 43, W65-W71, (2015)
[58] Liu, Z.; Xiao, X.; Yu, D.-J.; Jia, J.; Qiu, W.-R.; Chou, K.-C., pRNAm-PC: predicting N6-methyladenosine sites in RNA sequences via physical-chemical properties, Anal. Biochem., 497, 60-67, (2016)
[59] Nanni, L., Hyperplanes for predicting protein-protein interactions, Neurocomputing, 69, 257-263, (2005)
[60] Nazari, I.; Tayara, H.; Chong, K. T., Branch point selection in RNA splicing using deep learning, IEEE Access, 1, (2018)
[61] Oubounyt, M.; Louadi, Z.; Tayara, H.; Chong, K. T., Deep learning models based on distributed feature representations for alternative splicing prediction, IEEE Access, 6, 58826-58834, (2018)
[62] Pan, G.; Jiang, L.; Tang, J.; Guo, F., A novel computational method for detecting DNA methylation sites with DNA sequence information and physicochemical properties, Int. J. Mol. Sci., 19, 511, (2018)
[63] Pan, X.; Rijnbeek, P.; Yan, J.; Shen, H.-B., Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks, BMC Genomics, 19, 511, (2018)
[64] Qiu, W.-R.; Xiao, X.; Lin, W.-Z.; Chou, K.-C., iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach, BioMed Res. Int., (2014), 2014
[65] Qiu, W.-R.; Xiao, X.; Lin, W.-Z.; Chou, K.-C., iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model, J. Biomol. Struct. Dyn., 33, 1731-1742, (2015)
[66] Qiu, W.-R.; Xiao, X.; Xu, Z.-C.; Chou, K.-C., iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier, Oncotarget, 7, 51270, (2016)
[67] Qiu, W.-R.; Sun, B.-Q.; Xiao, X.; Xu, Z.-C.; Chou, K.-C., iPTM-mLys: identifying multiple lysine PTM sites and their different types, Bioinformatics, 32, 3116-3123, (2016)
[68] Qiu, W.-R.; Sun, B.-Q.; Xiao, X.; Xu, Z.-C.; Chou, K.-C., iHyd-PseCp: identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC, Oncotarget, 7, 44310, (2016)
[69] Qiu, W.-R.; Jiang, S.-Y.; Xu, Z.-C.; Xiao, X.; Chou, K.-C., iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition, Oncotarget, 8, 41178, (2017)
[70] Qiu, W.-R.; Jiang, S.-Y.; Sun, B.-Q.; Xiao, X.; Cheng, X.; Chou, K.-C., iRNA-2methyl: identify RNA 2’-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and ensemble classifier, Med. Chem., 13, 734-743, (2017)
[71] Qiu, W.-R.; Sun, B.-Q.; Xiao, X.; Xu, Z.-C.; Jia, J.-H.; Chou, K.-C., iKcr-PseEns: identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier, Genomics, 110, 239-246, (2018)
[72] Qiu, W. R.; Sun, B. Q.; Xiao, X.; Xu, D.; Chou, K. C., iPhos‐PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory, Mol. Inf., 36, (2017)
[73] Qu, W.; Wang, D.; Feng, S.; Zhang, Y.; Yu, G., A novel cross-modal hashing algorithm based on multimodal deep learning, Sci. China Inf. Sci., 60, (2017)
[74] Ramachandran, V.; Chen, X., Degradation of microRNAs by a family of exoribonucleases in Arabidopsis, Science, 321, 1490-1492, (2008)
[75] Song, J.; Wang, Y.; Li, F.; Akutsu, T.; Rawlings, N. D.; Webb, G. I.; Chou, K.-C., iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites, Brief. Bioinform, (2018)
[76] Sun, W.-J.; Li, J.-H.; Liu, S.; Wu, J.; Zhou, H.; Qu, L.-H.; Yang, J.-H., RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data, Nucleic Acids Res., 44, D259-D265, (2015)
[77] Tahir, M.; Hayat, M., iNuc-STNC: a sequence-based predictor for identification of nucleosome positioning in genomes by extending the concept of SAAC and Chou’s PseAAC, Mol. Biosyst., 12, 2587-2593, (2016)
[78] Tahir, M.; Hayat, M., Machine learning based identification of protein-protein interactions using derived features of physiochemical properties and evolutionary profiles, Artif. Intell. Med., 78, 61-71, (2017)
[79] Tahir, M.; Hayat, M.; Kabir, M., Sequence based predictor for discrimination of enhancer and their types by applying general form of Chou’s trinucleotide composition, Comput. Methods Programs Biomed., 146, 69-75, (2017)
[80] Tahir, M.; Hayat, M.; Khan, S. A., A two-layer computational model for discrimination of enhancer and their types using hybrid features pace of pseudo K-tuple nucleotide composition, Arabian J. Sci. Eng., 43, 6719-6727, (2018)
[81] Tahir, M.; Hayat, M.; Khan, S. A., iNuc-ext-PseTNC: an efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou’s PseAAC to pseudo-tri-nucleotide composition, Mol. Genet. Genomics, 1-12, (2018)
[82] Tayara, H.; Chong, K., Object detection in very high-resolution aerial images using one-stage densely connected feature pyramid network, Sensors, 18, 3341, (2018)
[83] Tayara, H.; Soo, K. G.; Chong, K. T., Vehicle detection and counting in high-resolution aerial images using convolutional regression neural network, IEEE Access, 6, 2220-2230, (2018)
[84] Xiao, X.; Cheng, X.; Chen, G.; Mao, Q.; Chou, K.-C., pLoc_bal-mGpos: predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC, Genomics, (2018)
[85] Xie, H.-L.; Fu, L.; Nie, X.-D., Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou’s PseAAC, Protein Eng. Des. Sel., 26, 735-742, (2013)
[86] Xu, Y.; Chou, K.-C., Recent progress in predicting posttranslational modification sites in proteins, Curr. Top. Med. Chem., 16, 591-603, (2016)
[87] Xu, Y.; Ding, J.; Wu, L.-Y.; Chou, K.-C., iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition, PLoS One, 8, e55844, (2013)
[88] Xu, Y.; Wang, Z.; Li, C.; Chou, K.-C., iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC, Med. Chem., 13, 544-551, (2017)
[89] Xu, Y.; Shao, X.-J.; Wu, L.-Y.; Deng, N.-Y.; Chou, K.-C., iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins, PeerJ, 1, e171, (2013)
[90] Xu, Y.; Wen, X.; Shao, X.-J.; Deng, N.-Y.; Chou, K.-C., iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition, Int. J. Mol. Sci., 15, 7594-7610, (2014)
[91] Xu, Y.; Wen, X.; Wen, L.-S.; Wu, L.-Y.; Deng, N.-Y.; Chou, K.-C., iNitro-Tyr: Prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition, PLoS One, 9, (2014)
[92] Yang, B.; Liu, F.; Ren, C.; Ouyang, Z.; Xie, Z.; Bo, X.; Shu, W., BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone, Bioinformatics, 33, 1930-1936, (2017)
[93] Yang, H.; Qiu, W.-R.; Liu, G.; Guo, F.-B.; Chen, W.; Chou, K.-C.; Lin, H., iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC, Int. J. Biol. Sci., 14, 883, (2018)
[94] Zhang, C. T.; Chou, K. C., An optimization approach to predicting protein structural class from amino acid composition, Protein Sci., 1, 401-408, (1992)
[95] Zhang, J.; Zhao, X.; Sun, P.; Ma, Z., PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou’s PseAAC, Int. J. Mol. Sci., 15, 11204-11219, (2014)
[96] Zhang, Y.; Xie, R.; Wang, J.; Leier, A.; Marquez-Lago, T. T.; Akutsu, T.; Webb, G. I.; Chou, K.-C.; Song, J., Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework, Brief. Bioinform., (2018), 5
[97] Züst, R.; Cervantes-Barragan, L.; Habjan, M.; Maier, R.; Neuman, B. W.; Ziebuhr, J.; Szretter, K. J.; Baker, S. C.; Barchet, W.; Diamond, M. S., Ribose 2’-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5, Nat. Immunol., 12, 137, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.