×

zbMATH — the first resource for mathematics

A central limit theorem for the gossip process. (English) Zbl 1430.60079
Summary: The Aldous gossip process represents the dissemination of information in geographical space as a process of locally deterministic spread, augmented by random long range transmissions. Starting from a single initially informed individual, the proportion of individuals informed follows an almost deterministic path, but for a random time shift, caused by the stochastic behaviour in the very early stages of development. In this paper, it is shown that, even with the extra information available after a substantial development time, this broad description remains accurate to first order. However, the precision of the prediction is now much greater, and the random time shift is shown to have an approximately normal distribution, with mean and variance that can be computed from the current state of the process.
MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J85 Applications of branching processes
60F05 Central limit and other weak theorems
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] D. J. Aldous (2012) When knowing early matters: gossip, percolation and Nash equilibria. In: Prokhorov and Contemporary Probability Theory, Eds. A.N. Shiryaev, S.R.S. Varadhan and E.L. Presman, pp. 3–28. Springer Proceedings in Mathematics & Statistics 33, Springer Verlag, Heidelberg. MR3070464 · Zbl 1270.60112
[2] S. Asmussen & H. Hering (1983) Branching processes. Progress in probability and statistics 3, Birkhäuser, Boston. MR0701538 · Zbl 0516.60095
[3] F. G. Ball (1983) The threshold behaviour of epidemic models. J. Appl. Probab.20, 227–241. MR0698527 · Zbl 0519.92023
[4] A. D. Barbour, L. Holst & S. Janson (1992) Poisson approximation. Oxford University Press. MR1163825 · Zbl 0746.60002
[5] A. D. Barbour & G. Reinert (2013). Asymptotic behaviour of gossip processes and small world networks. Adv. Appl. Probab. 45, 981–1010. MR3161293 · Zbl 1308.60107
[6] S. Chatterjee & R. Durrett (2011) Asymptotic behavior of Aldous’ gossip process. Ann. Appl. Probab. 21, 2447–2482. MR2895421 · Zbl 1246.60117
[7] E. Z. Ganuza & S. D. Durham (1974) Mean–square and almost–sure convergence of supercritical age–dependent branching processes. J. Appl. Probab. 11, 678–686. MR0359038 · Zbl 0324.60066
[8] S. van de Geer (1995) Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes. Ann. Statist. 23, 1779–1801. MR1370307 · Zbl 0852.60019
[9] P. Jagers (1975) Branching Processes with Biological Applications. John Wiley & Sons, London. MR0488341 · Zbl 0356.60039
[10] J. Komlós, P. Major & G. Tusnády (1975) An approximation of partial sums of independent RV’-s, and the sample DF. I Z. Wahrscheinlichkeitstheorie verw. Geb.32, 111–131. MR0375412
[11] T. G. Kurtz (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Prob.7, 49–58. MR0254917 · Zbl 0191.47301
[12] T. G. Kurtz (1971) Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Prob.8, 344–356. MR0287609 · Zbl 0219.60060
[13] S. Li (2011) Concise formulas for the area and volume of a hyperspherical cap. Asian J. Math. Stat.4, 66–70. MR2813331
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.