Song, Yamin; Hou, Jinchuan; Qi, Xiaofei Characterizing \(\xi\)-Lie multiplicative isomorphisms on von Neumann algebras. (English) Zbl 1469.46049 Abstr. Appl. Anal. 2014, Article ID 104272, 9 p. (2014). Summary: Let \(\mathcal{M}\) and \(\mathcal{N}\) be von Neumann algebras without central summands of type \(I_1\). Assume that \(\xi \in \mathbb C\) with \(\xi \neq 1\). In this paper, all maps \(\Phi : \mathcal{M} \rightarrow \mathcal{N}\) satisfying \(\Phi \left(A B - \xi B A\right) = \Phi \left(A\right) \Phi \left(B\right) - \xi \Phi \left(B\right) \Phi(A)\) are characterized. MSC: 46L10 General theory of von Neumann algebras × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Martindale,, W. S., When are multiplicative mappings additive?, Proceedings of the American Mathematical Society, 21, 695-698 (1969) · Zbl 0175.02902 · doi:10.1090/S0002-9939-1969-0240129-7 [2] An, R.; Hou, J., Additivity of Jordan multiplicative maps on Jordan operator algebras, Taiwanese Journal of Mathematics, 10, 1, 45-64 (2006) · Zbl 1107.46047 [3] Lu, F., Multiplicative mappings of operator algebras, Linear Algebra and its Applications, 347, 283-291 (2002) · Zbl 1028.47051 · doi:10.1016/S0024-3795(01)00560-2 [4] Bai, Z.; Du, S.; Hou, J., Multiplicative lie isomorphisms between prime rings, Communications in Algebra, 36, 5, 1626-1633 (2008) · Zbl 1145.16013 · doi:10.1080/00927870701870475 [5] Qi, X.; Hou, J., Additivity of Lie multiplicative maps on triangular algebras, Linear and Multilinear Algebra, 59, 4, 391-397 (2011) · Zbl 1216.47112 · doi:10.1080/03081080903582094 [6] Qi, X.; Hou, J., Characterization of Lie multiplicative isomorphisms between nest algebras, Science China Mathematics, 54, 11, 2453-2462 (2011) · Zbl 1273.47123 · doi:10.1007/s11425-011-4194-9 [7] Brooke, J. A.; Busch, P.; Pearson, D. B., Commutativity up to a factor of bounded operators in complex Hilbert space, Proceedings of the Royal Society: Series A, 458, 2017, 109-118 (2002) · Zbl 1037.81009 · doi:10.1098/rspa.2001.0858 [8] Kassel, C., Quantum Groups. Quantum Groups, Graduate Texts in Mathematics, 155 (1995), New York, NY, USA: Springer, New York, NY, USA · Zbl 0808.17003 · doi:10.1007/978-1-4612-0783-2 [9] Qi, X.; Hou, J., Additive Lie \(( \xi \)-Lie) derivations and generalized Lie \(( \xi \)-Lie) derivations on nest algebras, Linear Algebra and Its Applications, 431, 5-7, 843-854 (2009) · Zbl 1207.47081 · doi:10.1016/j.laa.2009.03.037 [10] Qi, X.; Hou, J., Characterization of \(\xi \)-Lie multiplicative isomorphisms, Operators and Matrices, 4, 3, 417-429 (2010) · Zbl 1203.16027 · doi:10.7153/oam-04-22 [11] Aczél, J.; Dhombres, J., Functional Equations in Several Variables. Functional Equations in Several Variables, Encyclopedia of Mathematics and its Applications, 31 (1989), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0685.39006 · doi:10.1017/CBO9781139086578 [12] Dixmier, J., Von Neumann Algebras. Von Neumann Algebras, North-Holland Mathematical Library, 27 (1981), Amsterdam, The Netherlands: North-Holland, Amsterdam, The Netherlands · Zbl 0473.46040 [13] Miers, C. R., Lie homomorphisms of operator algebras, Pacific Journal of Mathematics, 38, 717-735 (1971) · Zbl 0204.14803 · doi:10.2140/pjm.1971.38.717 [14] Brešar, M.; Miers, C. R., Commutativity preserving mappings of von Neumann algebras, Canadian Journal of Mathematics, 45, 4, 695-708 (1993) · Zbl 0794.46045 · doi:10.4153/CJM-1993-039-x [15] Brešar, M., Jordan mappings of semiprime rings II, Bulletin of the Australian Mathematical Society, 44, 2, 233-238 (1991) · Zbl 0727.16027 · doi:10.1017/S000497270002966X This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.