×

A general fixed point theorem for multivalued mappings that are not necessarily contractions and applications. (English) Zbl 1469.54143

Summary: We prove a general theorem on fixed points of multivalued mappings that are not necessarily contractions and derive a number of recent contributions on this topic for contraction mappings.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54C60 Set-valued maps in general topology
54E40 Special maps on metric spaces
54E50 Complete metric spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agarwal, R. P.; Meehan, M.; O’Regan, D., Fixed Point Theory and Applications, (2004), Cambridge, Mass, USA: Cambridge University Press, Cambridge, Mass, USA
[2] Balaj, M., A fixed point-equilibrium theorem with applications, Bulletin of the Belgian Mathematical Society, 17, 5, 919-928, (2010) · Zbl 1213.54061
[3] Goebel, K.; Kirk, W. A., Topics in Metric Fixed Point Theory. Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, 28, (1990), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0708.47031
[4] Granas, A.; Dugundji, J., Fixed Point Theory. Fixed Point Theory, Springer Monographs in Mathematics, (2003), New York, NY, USA: Springer, New York, NY, USA · Zbl 1025.47002
[5] Khamsi, M. A.; Kirk, W. A., An Introduction to Metric Spaces and Fixed Point Theory. An Introduction to Metric Spaces and Fixed Point Theory, Pure and Applied Mathematics, (2001), New York, NY, USA: John Wiley and Sons, New York, NY, USA · Zbl 1318.47001
[6] Nadler, S. B., Multi-valued contraction mappings, Pacific Journal of Mathematics, 30, 475-488, (1969) · Zbl 0187.45002
[7] Markin, J. T., A fixed point theorem for set valued mappings, Bulletin of the American Mathematical Society, 74, 639-640, (1968) · Zbl 0159.19903
[8] Chang, T. H., Common fixed point theorems for multivalued mappings, Mathematica Japonica, 41, 2, 311-320, (1995) · Zbl 0840.47041
[9] Ćirić, L., Multi-valued nonlinear contraction mappings, Nonlinear Analysis: Theory, Methods & Applications, 71, 7-8, 2716-2723, (2009) · Zbl 1179.54053
[10] Ćirić, L., Fixed point theorems for multi-valued contractions in complete metric spaces, Journal of Mathematical Analysis and Applications, 348, 1, 499-507, (2008) · Zbl 1213.54063
[11] Daffer, P. Z.; Kaneko, H., Fixed points of generalized contractive multi-valued mappings, Journal of Mathematical Analysis and Applications, 192, 2, 655-666, (1995) · Zbl 0835.54028
[12] Feng, Y.; Liu, S., Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, Journal of Mathematical Analysis and Applications, 317, 1, 103-112, (2006) · Zbl 1094.47049
[13] Jachymski, J., On Reich’s question concerning fixed points of multimaps, Unione Matematica Italiana: Bollettino A: Serie VII, 9, 3, 453-460, (1995) · Zbl 0863.54042
[14] Klim, D.; Wardowski, D., Fixed point theorems for set-valued contractions in complete metric spaces, Journal of Mathematical Analysis and Applications, 334, 1, 132-139, (2007) · Zbl 1133.54025
[15] Latif, A.; Abdou, A. A. N., Multivalued generalized nonlinear contractive maps and fixed points, Nonlinear Analysis: Theory, Methods & Applications, 74, 4, 1436-1444, (2011) · Zbl 1206.54050
[16] Latif, A.; Luc, D. T., Variational relation problems: existence of solutions and fixed points of contraction mappings, Fixed Point Theory and Applications, 315, 1-10, (2013) · Zbl 1296.49021
[17] Latif, A.; Tweddle, I., Some results on coincidence points, Bulletin of the Australian Mathematical Society, 59, 1, 111-117, (1999) · Zbl 0930.47021
[18] Mizoguchi, N.; Takahashi, W., Fixed point theorems for multivalued mappings on complete metric spaces, Journal of Mathematical Analysis and Applications, 141, 1, 177-188, (1989) · Zbl 0688.54028
[19] Suzuki, T., Mizoguchi-Takahashi’s fixed point theorem is a real generalization of Nadler’s, Journal of Mathematical Analysis and Applications, 340, 1, 752-755, (2008) · Zbl 1137.54026
[20] Du, W.-S.; Khojasteh, F., New results and generalizations for approximate fixed point property and their applications, Abstract and Applied Analysis, 2014, (2014) · Zbl 1474.54151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.